iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-74272-2_36
Blood Detection in IVUS Images for 3D Volume of Lumen Changes Measurement Due to Different Drugs Administration | SpringerLink
Skip to main content

Blood Detection in IVUS Images for 3D Volume of Lumen Changes Measurement Due to Different Drugs Administration

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

Lumen volume variations is of great interest by the physicians given it reduces the probability of infarction as it increases. In this paper we present a fast and efficient method to detect the lumen borders in longitudinal cuts of IVUS sequences using an AdaBoost classifier trained with several local features assuring their stability. We propose a criterion for feature selection based on stability leave-one-out cross validation. Results on the segmentation of 18 IVUS pullbacks show that the proposed procedure is fast and robust leading to 90% of time reduction with the same characterization performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sonka, M., Zhang, X., Siebes, M.: Segmentation of intravascular ultrasound images: A knowledge based approach. IEEE Trans. on Medical Imaging 14, 719–732 (1995)

    Article  Google Scholar 

  2. Malik, J., Belongie, S., Shi, T.L.: Contour and texture analysis for image segmentation. International Journal of Computer Vision 43, 7–27 (2001)

    Article  MATH  Google Scholar 

  3. Puzicha, J., Buhmann, T.H.: Unsupervised texture segmentation in a deterministic anhealing framework. IEEE Trans. on Pattern Recognition and Machine Intelligence 20, 803–818 (1998)

    Article  Google Scholar 

  4. Zhang, X., Sonka, C.M.: Tissue characterization in intravascular ultrasound images. IEEE Trans. on Medical Imaging 17, 889–899 (1998)

    Article  Google Scholar 

  5. von Birgelen, C., van der Lugt, A., Nicosia, A., et al.: Computerized assessment of coronary lumen and atherosclerotic plaque dimensions in three-dimensional intravascular ultrasound correlated with histomorphometry. American Journal of Cardiology 78, 1202–1209 (1996)

    Article  Google Scholar 

  6. Klingensmith, J., Shekhar, R., Vince, D.: Evaluation of three-dimensional segmentation algorithms for identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans. on Medical Imaging 19, 996–1011 (2000)

    Article  Google Scholar 

  7. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: European Conference on Computational Learning Theory, pp. 23–37 (1995)

    Google Scholar 

  8. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features (2001)

    Google Scholar 

  9. Daugman, J.: Uncertainty relation for resolution in space, spatial frequency and orientation optimized by two dimensional visual cortical filters. Journal of the Optical Society of America 2, 1160–1169 (1985)

    Google Scholar 

  10. Dubes, R., Ohanian, P.: Performance evaluation for four classes of textural features. Pattern Recognition 25, 819–833 (1992)

    Article  Google Scholar 

  11. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 971–987 (2002)

    Article  Google Scholar 

  12. Poggio, T., Ryan Rifkin, S.M., Niyogi, P.: General conditions for predictivity in learning theory. Letters to Nature 428, 419–422 (2004)

    Article  Google Scholar 

  13. Duch, W., Diercksen, G.H.F.: Feature Space Mapping as a universal adaptive system. Computer Physics Communications 87, 341–371 (1995)

    Article  MATH  Google Scholar 

  14. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1992)

    Google Scholar 

  15. Michael Kass, A.W., Terzopoulo, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1998)

    Article  Google Scholar 

  16. McInerney, T., Terzopoulos, D.: Deformable models in medical images analysis:a survey. Medical Image Analysis 1, 91–108 (1996)

    Article  Google Scholar 

  17. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  18. Rotger, D., Rosales, M., Garcia, J., Pujol, O., Mauri, J., Radeva, P.: Activevessel: A new multimedia workstation for intravascular ultrasound and angiography fusion. Proc. IEEE of Computers in Cardiology 30, 65–68 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rotger, D., Radeva, P., Fernández-Nofrerías, E., Mauri, J. (2007). Blood Detection in IVUS Images for 3D Volume of Lumen Changes Measurement Due to Different Drugs Administration. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics