iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-74208-1_11
On the Approximation Resistance of a Random Predicate | SpringerLink
Skip to main content

Abstract

A predicate is approximation resistant if no probabilistic polynomial time approximation algorithm can do significantly better then the naive algorithm that picks an assignment uniformly at random. Assuming that the Unique Games Conjecture is true we prove that most Boolean predicates are approximation resistant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gowers, T.: A new proof of Szemerédi’s theorem for progressions of length four. Geometric and Functional Analysis 8, 529–551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gowers, T.: A new proof of Szemerédi’s theorem. Geometric and Functional Analysis 11, 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guruswami, V., Lewin, D., Sudan, M., Trevisan, L.: A tight characterization of NP with 3 query PCPs. In: Proceedings of 39th Annual IEEE Symposium on Foundations of Computer Science, Palo Alto, 1998, pp. 8–17. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  5. Hast, G.: Beating a random assignment. KTH, Stockholm, Ph.D Thesis (2005)

    Google Scholar 

  6. Håstad, J.: Some optimal inapproximability results. Journal of ACM 48, 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Håstad, J.: Every 2-CSP allows nontrivial approximation. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computation, pp. 740–746. ACM Press, New York (2005)

    Google Scholar 

  8. Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of 34th ACM Symposium on Theory of Computating, pp. 767–775. ACM Press, New York (2002)

    Google Scholar 

  9. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. In: CCC. Proc. of 18th IEEE Annual Conference on Computational Complexity, pp. 379–386. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  10. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amortized query complexity. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 191–199. ACM Press, New York (2000)

    Google Scholar 

  11. Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables and PCPs. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 11–20. ACM Press, New York (2006)

    Google Scholar 

  12. Schaefer, T.: The complexity of satisfiability problems. In: Conference record of the Tenth annual ACM Symposium on Theory of Computing, pp. 216–226. ACM Press, New York (1978)

    Google Scholar 

  13. Zwick, U.: Personal Communication

    Google Scholar 

  14. Zwick, U.: Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint. In: Proceedings 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 201–210. ACM Press, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Håstad, J. (2007). On the Approximation Resistance of a Random Predicate. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics