iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-73133-7_9
Discrete Temporal Models of Social Networks | SpringerLink
Skip to main content

Discrete Temporal Models of Social Networks

  • Conference paper
Statistical Network Analysis: Models, Issues, and New Directions (ICML 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4503))

Included in the following conference series:

Abstract

We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including MCMC maximum likelihood estimation algorithms. We discuss models of this type and give examples, as well as a demonstration of their use for hypothesis testing and classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, C.J., Wasserman, S., Crouch, B.: A p* primer: Logit models for social networks. Social Networks 21, 37–66 (1999)

    Article  Google Scholar 

  2. Robins, G.L., Pattison, P.E.: Interdependencies and social processes: Generalized dependence structures. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Snijders, T.A.B.: Markov Chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure 3(2) (2002)

    Google Scholar 

  4. Frank, O., Strauss, D.: Markov graphs. Journal of the American Statistical Association 81 (1986)

    Google Scholar 

  5. Geyer, C., Thompson, E.: Constrained Monte Carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society, B 54(3), 657–699 (1992)

    MathSciNet  Google Scholar 

  6. Carreira-Perpignán, M., Hinton, G.E.: On contrastive divergence learning. In: Artificial Intelligence and Statistics (2005)

    Google Scholar 

  7. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Opper, M., Saad, D. (eds.): Advanced Mean Field Methods: Theory and Practice. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  9. Wainwright, M., Jaakkola, T., Willsky, A.: A new class of upper bounds on the log partition function. IEEE Trans. on Information Theory 51(7) (2005)

    Google Scholar 

  10. McLachlan, G., Krishnan, T.: The EM algorithm and Extensions. Wiley, Chichester (1997)

    MATH  Google Scholar 

  11. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the International Conference on Machine Learning (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edoardo Airoldi David M. Blei Stephen E. Fienberg Anna Goldenberg Eric P. Xing Alice X. Zheng

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hanneke, S., Xing, E.P. (2007). Discrete Temporal Models of Social Networks. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds) Statistical Network Analysis: Models, Issues, and New Directions. ICML 2006. Lecture Notes in Computer Science, vol 4503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73133-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73133-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73132-0

  • Online ISBN: 978-3-540-73133-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics