Abstract
We propose a family of statistical models for social network evolution over time, which represents an extension of Exponential Random Graph Models (ERGMs). Many of the methods for ERGMs are readily adapted for these models, including MCMC maximum likelihood estimation algorithms. We discuss models of this type and give examples, as well as a demonstration of their use for hypothesis testing and classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, C.J., Wasserman, S., Crouch, B.: A p* primer: Logit models for social networks. Social Networks 21, 37–66 (1999)
Robins, G.L., Pattison, P.E.: Interdependencies and social processes: Generalized dependence structures. Cambridge University Press, Cambridge (2004)
Snijders, T.A.B.: Markov Chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure 3(2) (2002)
Frank, O., Strauss, D.: Markov graphs. Journal of the American Statistical Association 81 (1986)
Geyer, C., Thompson, E.: Constrained Monte Carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society, B 54(3), 657–699 (1992)
Carreira-Perpignán, M., Hinton, G.E.: On contrastive divergence learning. In: Artificial Intelligence and Statistics (2005)
Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
Opper, M., Saad, D. (eds.): Advanced Mean Field Methods: Theory and Practice. MIT Press, Cambridge (2001)
Wainwright, M., Jaakkola, T., Willsky, A.: A new class of upper bounds on the log partition function. IEEE Trans. on Information Theory 51(7) (2005)
McLachlan, G., Krishnan, T.: The EM algorithm and Extensions. Wiley, Chichester (1997)
Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the International Conference on Machine Learning (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hanneke, S., Xing, E.P. (2007). Discrete Temporal Models of Social Networks. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds) Statistical Network Analysis: Models, Issues, and New Directions. ICML 2006. Lecture Notes in Computer Science, vol 4503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73133-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-73133-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73132-0
Online ISBN: 978-3-540-73133-7
eBook Packages: Computer ScienceComputer Science (R0)