iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-72914-3_20
The Ferry Cover Problem | SpringerLink
Skip to main content

The Ferry Cover Problem

  • Conference paper
Fun with Algorithms (FUN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4475))

Included in the following conference series:

Abstract

In the classical wolf-goat-cabbage puzzle, a ferry boat man must ferry three items across a river using a boat that has room for only one, without leaving two incompatible items on the same bank alone. In this paper we define and study a family of optimization problems called Ferry problems, which may be viewed as generalizations of this familiar puzzle.

In all Ferry problems we are given a set of items and a graph with edges connecting items that must not be left together unattended. We present the Ferry Cover problem (FC), where the objective is to determine the minimum required boat size and demonstrate a close connection with Vertex Cover which leads to hardness and approximation results. We also completely solve the problem on trees. Then we focus on a variation of the same problem with the added constraint that only 1 round-trip is allowed (FC1). We present a reduction from MAX-NAE-{3}-SAT which shows that this problem is NP-hard and APX-hard. We also provide an approximation algorithm for trees with a factor asymptotically equal to \(\frac{4}{3}\). Finally, we generalize the above problem to define FC m , where at most m round-trips are allowed, and MFT k , which is the problem of minimizing the number of round-trips when the boat capacity is k. We present some preliminary lemmata for both, which provide bounds on the value of the optimal solution, and relate them to FC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and intractability of approximation problems. In: Proc. 33rd IEEE annual Symposium on Foundations of Computer Science (FOCS), pp. 13–22. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  2. Borndörfer, R., Grötschel, M., Löbel, A.: Alcuin’s transportation problems and integer programming (1995)

    Google Scholar 

  3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Co., New York, NY (1979)

    MATH  Google Scholar 

  4. Hell, P., Nešetřil, J.: On the complexity of h-coloring. J. Comb. Theory Ser. B. 48(1), 92–110 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Petrank, E.: The hardness of approximation: Gap location. In: Computational Complexity, vol. 4, Springer, Heidelberg (1994)

    Google Scholar 

  6. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lampis, M., Mitsou, V. (2007). The Ferry Cover Problem. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds) Fun with Algorithms. FUN 2007. Lecture Notes in Computer Science, vol 4475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72914-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72914-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72913-6

  • Online ISBN: 978-3-540-72914-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics