iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-72907-5_44
Segmentation of Myocardial Regions in Echocardiography Using the Statistics of the Radio-Frequency Signal | SpringerLink
Skip to main content

Segmentation of Myocardial Regions in Echocardiography Using the Statistics of the Radio-Frequency Signal

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

We present an original Radial Basis Functions-based multiphase level set approach for the segmentation of cardiac structures in echocardiography. The method relies on two main contributions. We first describe a distribution allowing for the modeling of the radiofrequency signal for both blood and myocardial regions. We then formulate the problem of segmenting several cardiac regions in echocardiography using a Maximum Likelihood framework based on the proposed distribution. We minimize the resulting functional using a RBF-based multiphase level set model. Results obtained on both simulation and data acquired in vivo demonstrate the ability of our method to segment myocardial regions in echocardiography imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Noble, J.A., Boukerroui, D.: Ultrasound image segmentation: A survey. IEEE Transactions on Medical Imaging 25(8), 987–1010 (2006)

    Article  Google Scholar 

  2. Shankar, P.M.: A model for ultrasonic scattering from tissues based on the k distribution. Phys. Med. Biol. 40, 1633–1649 (1995)

    Article  Google Scholar 

  3. Bernard, O., D’hooge, J., Friboulet, D.: Statistics of the radio-frequency signal based on k distribution with application to echocardiographic images. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53(9), 1689–1694 (2006)

    Article  Google Scholar 

  4. Pearson, K.: The problem of the random walk. Nature 72, 294–342 (1905)

    Google Scholar 

  5. Goodman, J.W.: Statistical Optics. Wiley, New York (1985)

    Google Scholar 

  6. Jakeman, E., Pusey, P.N.: A model for non-rayleigh sea echo. IEEE Trans. Antennas Propagat 24(6), 806–814 (1976)

    Article  Google Scholar 

  7. Bernard, O., D’hooge, J., Friboulet, D.: Statistical modeling of the radio-frequency signal in echocardiographic images using modified k-distribution and generalized gaussian distribution. In: IEEE International Ultrasonics Symposium, Vancouver, Canada, (in press 2006)

    Google Scholar 

  8. Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and bayes/mdlfor multiband image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 18, 884–900 (1996)

    Article  Google Scholar 

  9. Gelas, A., Bernard, O., Friboulet, D., Prost, R.: Compactly supported radial basis functions based collocation method for level-set evolution in image segmentation,” IEEE Transaction on Image Processing (in press 2007)

    Google Scholar 

  10. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  11. Mallat, S.G.: A theory of multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  12. Chan, T., Vese, L.: An active contour model without edges. In: Scale-Space Theories in Computer Vision, pp. 141–151 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bernard, O., Touil, B., Gelas, A., Prost, R., Friboulet, D. (2007). Segmentation of Myocardial Regions in Echocardiography Using the Statistics of the Radio-Frequency Signal. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics