iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-72383-7_75
Non-flat Function Estimation Using Orthogonal Least Squares Regression with Multi-scale Wavelet Kernel | SpringerLink
Skip to main content

Non-flat Function Estimation Using Orthogonal Least Squares Regression with Multi-scale Wavelet Kernel

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4491))

Included in the following conference series:

  • 1396 Accesses

Abstract

Estimating the non-flat function which comprises both the steep variations and the smooth variations is a hard problem. The existing kernel methods with a single common variance for all the regressors can not achieve satisfying results. In this paper, a novel multi-scale model is constructed to tackle the problem by orthogonal least squares regression (OLSR) with wavelet kernel. The scheme tunes the dilation and translation of each wavelet kernel regressor by incrementally minimizing the training mean square error using a guided random search algorithm. In order to prevent the possible over-fitting, a practical method to select termination threshold is used. The experimental results show that, for non-flat function estimation problem, OLSR outperforms traditional methods in terms of precision and sparseness. And OLSR with wavelet kernel has a faster convergence rate as compared to that with conventional Gaussian kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smola, A.: Regression Estimation with Support Vector Learning Machines. Master’s Thesis, Technische University München (1996), Available at http://www.kernel-machines.org

  2. Suykens, J.A.K., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 9, 293–300 (1999)

    Article  MATH  Google Scholar 

  3. Smola, A., Schölkopf, B., Rätsch, G.: Linear Programs for Automatic Accuracy Control in Regression. In: Proceedings of the Ninth International Conference on Artificial Neural Networks, London, pp. 575–580 (1999)

    Google Scholar 

  4. Zheng, D., Wang, J., Zhao, Y.: Non-flat Function Estimation with A Multi-scale Support Vector Regression. Neurocomputing (in press)

    Google Scholar 

  5. Zheng, D., Wang, J., Zhao, Y.: Training Sparse MS-SVR with an Expectation-Maximization Algorithm. Neurocomputing 69, 1659–1664 (2006)

    Article  Google Scholar 

  6. Guigue, V., Rakotomamonjy, A., Canu, S.: Kernel Basis Pursuit. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 146–157. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Chen, S., Billings, S.A., Luo, W.: Orthogonal Least Squares Methods and Their Application to Non-linear System Identification. Int. J. Control 50, 1873–1896 (1989)

    Article  MATH  Google Scholar 

  8. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans. Neural Networks 2, 302–309 (1991)

    Article  Google Scholar 

  9. Chen, S., Wang, X.X., Brown, D.J.: Orthogonal Least Squares Regression with Tunable Kernels. Electronics Letters 41(8) (2005)

    Google Scholar 

  10. Chen, S.Y., Wu, Y., Luk, B.L.: Combined Genetic Algorithm Optimization and Regularized Orthogonal Least Squares Learning for Radial Basis Function Networks. IEEE Trans. Neural Networks 10(5), 1239–1243 (1999)

    Article  Google Scholar 

  11. Chen, S., Wang, X.X., Harris, C.J.: Experiments with Repeating Weighted Boosting Search for Optimization in Signal Processing Applications. IEEE Trans. Syst. Man Cybern. B, Cybern. 35(4), 682–693 (2005)

    Article  Google Scholar 

  12. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)

    MATH  Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets. CBMS, vol. 61. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  14. Zhang, L., Zhou, W., Jiao, L.: Wavelet Support Vector Machine. IEEE Trans. on System, Man and Cybernetics-Part B: Cybernetics 34, 34–39 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, M., Fu, L., He, T., Wang, G. (2007). Non-flat Function Estimation Using Orthogonal Least Squares Regression with Multi-scale Wavelet Kernel. In: Liu, D., Fei, S., Hou, ZG., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72383-7_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72383-7_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72382-0

  • Online ISBN: 978-3-540-72383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics