iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-69968-2_3
Accelerated microRNA-Precursor Detection Using the Smith-Waterman Algorithm on FPGAs | SpringerLink
Skip to main content

Accelerated microRNA-Precursor Detection Using the Smith-Waterman Algorithm on FPGAs

  • Conference paper
Distributed, High-Performance and Grid Computing in Computational Biology (GCCB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4360))

Included in the following conference series:

Abstract

During the last few years more and more functionalities of RNA have been discovered that were previously thought of being carried out by proteins alone. One of the most striking discoveries was the detection of microRNAs, a class of noncoding RNAs that play an important role in post-transcriptional gene regulation. Large-scale analyses are needed for the still increasingly growing amount of sequence data derived from new experimental technologies. In this paper we present a framework for the detection of the distinctive precursor structure of microRNAS that is based on the well-known Smith-Waterman algorithm. By conducting the computation of the local alignment on a FPGA, we are able to gain a substantial speedup compared to a pure software implementation bringing together supercomputer performance and bioinformatics research. We conducted experiments on real genomic data and we found several new putative hits for microRNA precursor structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mattick, J.S.: Challenging the dogma: The hidden layer of non-protein rnas in complex organisms. Bioessays 25, 930–939 (2003)

    Article  Google Scholar 

  2. Mattick, J.S.: RNA regulation: A new genetics? Nature Genetics 5, 316–323 (2004)

    Article  Google Scholar 

  3. Kampa, D. et al.: Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res. 14(3), 331–342 (2004)

    Article  Google Scholar 

  4. Johnson, J.M., Edwards, S., Shoemaker, D., Schadt, E.E.: Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 21(2), 93–102 (2005)

    Article  Google Scholar 

  5. Imanishi, T. et al.: Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLos Biology 2, 856–875 (2004)

    Article  Google Scholar 

  6. Cummins, J.M. et al.: The colorectal microRNAome. PNAS 103(10), 3687–3692 (2006)

    Article  Google Scholar 

  7. Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A., Stadler, P.F.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol 23(11), 1383–1390 (2005)

    Article  Google Scholar 

  8. Missal, K., Rose, D., Stadler, P.F.: Non-coding RNAs in ciona intestinalis. Bioinformatics 21(S2), 77–78 (2005)

    Google Scholar 

  9. Missal, K. et al.: Prediction of structured non-coding rnas in the genomes of the nematodes caenorhabditis elegans and caenorhabditis briggsae. J. Exp. Zoolog. B. Mol. Dev. Evol. page Epub ahead of print (2006)

    Google Scholar 

  10. Ambros, V.: The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  Google Scholar 

  11. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  12. Sullivan, C.S., Ganem, D.: MicroRNAs and viral infection. Cell 20, 3–7 (2005)

    Google Scholar 

  13. He, L., Hannon, G.: MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004)

    Article  Google Scholar 

  14. Washietl, S., Hofacker, I.L., Stadler, P.F.: Fast and reliable prediction of noncoding RNAs. PNAS 102(7), 2454–2459 (2005)

    Article  Google Scholar 

  15. Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2 (2001)

    Google Scholar 

  16. Zhang, S., Haas, B., Eskin, E., Bafna, V.: Searching genomes for noncoding RNA using FastR. IEEE/ACM Trans. Comput. Biology Bioinform 2(4), 366–379 (2005)

    Article  Google Scholar 

  17. Klein, R., Eddy, S.: RSEARCH: finding homologs of single structured RNA sequences. BMC Bioinformatics 4 (2003)

    Google Scholar 

  18. Hertel, J., Stadler, P.: Hairpins in a haystack: Recognizing microRNA precursors in comparative genomics data. In: ISMB’06, To appear (2006)

    Google Scholar 

  19. Dezulian, T., Remmert, M., Palatnik, J., Weigel, D., Huson, D.: Identification of plant microRNA homologs. Bioinformatics 22(3), 359–360 (2006)

    Article  Google Scholar 

  20. Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., Li, Y.: MicroRNA identification based on sequence and structure alignment. Bioinformatics 21(18), 3610–3614 (2005)

    Article  Google Scholar 

  21. Sewer, A., Paul, N., Landgraf, P., Aravin, A., Pfeffer, S., Brownstein, M., Tuschl, T., van Nimwegen, E., Zavolan, M.: Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6(1), 267 (2005)

    Article  Google Scholar 

  22. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biology 147, 195–197 (1981)

    Article  Google Scholar 

  23. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    Google Scholar 

  24. Active Motif Inc. TimeLogic DeCypher solutions, http://www.timelogic.com/decypher_algorithms.html

    Google Scholar 

  25. May, P., Bauer, M., Koeberle, C., Klau, G.W.: A computational approach to microRNA detection. Technical Report, Zuse Institute Berlin, 06-44 (2006)

    Google Scholar 

  26. LiSA—Library for Structural Alignment, http://www.planet-lisa.net

    Google Scholar 

  27. Hofacker, I.L.: Vienna RNA secondary structure server. Nucl. Acids Res. 31(13), 3429–3431 (2003)

    Article  Google Scholar 

  28. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., Enright, A.J.: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research 34(Database Issue), D140–D144 (2006)

    Google Scholar 

  29. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., Marks, D.S.: MicroRNA targets in Drosophila. Genome Biology 5(1), R1.1–R1.14 (2003)

    Google Scholar 

  30. Bafna, V., Tang, H., Zhang, S.: Consensus folding of unaligned RNA sequences revisited. J. Comput. Biol. 13(2), 283–295 (2006)

    Article  MathSciNet  Google Scholar 

  31. Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., Bentwich, Z.: Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics 37(7), 766–770 (2005)

    Article  Google Scholar 

  32. Margerm, S.: Cray XD1 Smith Waterman Accelerator (SWA) FPGA Design. PNR-DD-0025 Issue 0.7, Cray inc. (December 2005)

    Google Scholar 

  33. Margerm, S.: Reconfigurable computing in real-world applications. FPGA and Structured ASIC Journal, http://www.fpgajournal.com/articles_2006/pdf/20060207_cray.pdf (February 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Werner Dubitzky Assaf Schuster Peter M. A. Sloot Michael Schroeder Mathilde Romberg

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

May, P., Klau, G.W., Bauer, M., Steinke, T. (2007). Accelerated microRNA-Precursor Detection Using the Smith-Waterman Algorithm on FPGAs. In: Dubitzky, W., Schuster, A., Sloot, P.M.A., Schroeder, M., Romberg, M. (eds) Distributed, High-Performance and Grid Computing in Computational Biology. GCCB 2007. Lecture Notes in Computer Science(), vol 4360. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69968-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69968-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69841-8

  • Online ISBN: 978-3-540-69968-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics