Abstract
We present an application based on X3D technologies for the telerehabilitation of patients affected by neurological diseases. In particular the virtual world is designed to integrate the activity made on NU!Reha Desk product with the activities performed on the virtual world. The main target of our system are patients with heavy neurological disease (people not able to move a forced in static positions because of therapies, etc).
The system is designed to allow the remote monitoring and assessment of the patient’s activities by the staff at the hospital.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Russell, T.G., Wootton, R., et al.: Physical outcome measurements via the Internet: reliability at two Internet speeds. J. Telemed. Telecare 8(Suppl. 3), 50–52 (2002)
Ricker, J.H., Rosenthal, M., et al.: Telerehabilitation needs: a survey of persons with acquired brain injury. J. Head Trauma Rehabil 17(3), 242–250 (2002)
Robinson, S.S., Seale, D.E., et al.: Use of telemedicine to follow special needs children. Telemed. J. E. Health 9(1), 57–61 (2003)
Sanford, J.A., Griffiths, P.C., et al.: The effects of in-home rehabilitation on task self-efficacy in mobility-impaired adults: A randomized clinical trial. J. Am. Geriatr. Soc. 54(11), 1641–1648 (2006); Sanford, J. A., Jones, M., et al.: Using telerehabilitation to identify home modification needs. Assist. Technol. 16(1), 43–53 (2004)
Torsney, K.: Advantages and disadvantages of telerehabilitation for persons with neurological disabilities. NeuroRehabilitation 18(2), 183–185 (2003)
Hauber, R.P., Jones, M.L.: Telerehabilitation support for families at home caring for individuals in prolonged states of reduced consciousness. J. Head Trauma Rehabil. 17(6), 535–541 (2002)
Reinkensmeyer, D.J., Pang, C.T., et al.: Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 10(2), 102–108 (2002)
Ketelaer, P., De Wolf, L.: New Technologies in MS: present and future applications of virtual reality. The Int. MS. J. (2001)
Burdea, G., Popescu, V., et al.: Virtual reality-based orthopedic telerehabilitation. IEEE Trans. Rehabil. Eng. 8(3), 430–432 (2000)
Girone, M., Burdea, G., et al.: Orthopedic rehabilitation using the ’Rutgers ankle’ interface. Stud. Health Technol. Inform. 70, 89–95 (2000)
Jack, D., Boian, R., et al.: Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural. Syst. Rehabil. Eng. 9(3), 308–318 (2001)
Hill, A.J., Theodoros, D.G., et al.: An Internet-based telerehabilitation system for the assessment of motor speech disorders: a pilot study. Am. J. Speech Lang. Pathol. 15(1), 45–56 (2006)
Placidi, G.: A smart virtual glove for the hand telerehabilitation. Comput. Biol. Med (2006)
Piron, L., Cenni, F., et al.: Virtual Reality as an assessment tool for arm motor deficits after brain lesions. Stud. Health Technol. Inform. 81, 386–392 (2001)
Piron, L., Tonin, P., et al.: Motor tele-rehabilitation in post-stroke patients. Med. Inform. Internet Med. 29(2), 119–125 (2004)
Chumbler, N.R., Mann, W.C., et al.: The association of home-telehealth use and care coordination with improvement of functional and cognitive functioning in frail elderly men. Telemed. J. E. Health 10(2), 129–137 (2004)
Rintala, D.H., Krouskop, T.A., et al.: Telerehabilitation for veterans with a lower-limb amputation or ulcer: Technical acceptability of data. J. Rehabil. Res. Dev. 41(3B), 481–490 (2004)
Holden, M.K., Dyar, T.A., et al.: Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 36–42 (2007)
Carey, J.R., Durfee, W.K., et al.: Comparison of Finger Tracking versus Simple Movement Training via Telerehabilitation to Alter Hand Function and Cortical Reorganization after Stroke. Neurorehabil. Neural Repair (2007)
Page, S.J., Levine, P.: Modified constraint-induced therapy extension: using remote technologies to improve function. Arch. Phys. Med. Rehabil. 88(7), 922–927 (2007)
Heuser, A., Kourtev, H., et al.: Telerehabilitation using the Rutgers Master II glove following carpal tunnel release surgery: proof-of-concept. IEEE Trans. Neural Syst. Rehabil. Eng. 15(1), 43–49 (2007)
You can find alla information about the project and the Software environment at the web site, http://www.neurovr.org
The X3D specifications and the documentation are available at the Web3D Consortium Web site, http://www.web3d.org/x3d
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zampolini, M., Magni, R., Gervasi, O. (2008). An X3D Approach to Neuro-Rehabilitation. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-69848-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69840-1
Online ISBN: 978-3-540-69848-7
eBook Packages: Computer ScienceComputer Science (R0)