iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-69848-7_51
A Splitting Scheme for Large-Scale Atmosphere Dynamics Models | SpringerLink
Skip to main content

A Splitting Scheme for Large-Scale Atmosphere Dynamics Models

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5073))

Included in the following conference series:

  • 1584 Accesses

Abstract

Splitting techniques are applied in the context of the semi-Lagrangian semi-implicit approach in order to design computationally efficient and accurate numerical scheme for large-scale atmosphere dynamics. Description of the constructed numerical algorithm is provided and its properties of accuracy and stability are discussed. Performed numerical experiments with daily gridded atmospheric data showed that the developed scheme is efficient and supplies accurate forecast fields using time steps up to one hour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anthes, R.A., Kuo, Y.H., Hsie, E.Y., Low-Nam, S., Bettge, T.W.: Estimation of skill and uncertainty in regional numerical models. Q. J. R. Meteorol. Soc. 115, 763–806 (1989)

    Article  Google Scholar 

  2. Bandy, V., Sweet, R.: A set of three drivers for BOXMG: a black box multigrid solver. Comm. Appl. Num. Methods 8, 563–571 (1992)

    Article  MATH  Google Scholar 

  3. Bourchtein, A.: Semi-Lagrangian semi-implicit space splitting regional baroclinic atmospheric model. Appl. Numer. Math. 41, 307–326 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bourchtein, A.: Semi-Lagrangian semi-implicit fully splitted hydrostatic atmospheric model. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 25–34. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Burridge, D.M.: A split semi-implicit reformulation of the Bushby-Timpson 10 level model. Q. J. R. Meteorol. Soc. 101, 777–792 (1975)

    Google Scholar 

  6. Cohn, S.E., Dee, D.P.: An analysis of the vertical structure equation for arbitrary thermal profiles. Q. J. R. Meteorol. Soc. 115, 143–171 (1989)

    Article  Google Scholar 

  7. Côté, J., Béland, M., Staniforth, A.: Stability of vertical discretization schemes for semi-implicit primitive equations models: theory and applications. Mon. Wea. Rev. 111, 1189–1207 (1983)

    Article  Google Scholar 

  8. Cullen, M.: Modelling atmospheric flows. Acta Numerica 16, 67–154 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dendy, J.E.: Black box multigrid. J. Comp. Phys. 48, 366–386 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durran, D.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York (1999)

    Google Scholar 

  11. Gospodinov, I.G., Spiridonov, V.G., Geleyn, J.-F.: Second-order accuracy of two-time-level semi-Lagrangian schemes. Q. J. R. Meteorol. Soc. 127, 1017–1033 (2001)

    Article  Google Scholar 

  12. Gravel, S., Staniforth, A., Cote, J.: A stability analysis of a family of baroclinic semi-Lagrangian forecast models. Mon. Wea. Rev. 121, 815–824 (1993)

    Article  Google Scholar 

  13. Holton, J.R.: An Introduction to Dynamic Meteorology. Academic Press, San Diego (1992)

    Google Scholar 

  14. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Campridge University Press, Cambridge (2002)

    Google Scholar 

  15. Kasahara, A.: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev. 102, 509–522 (1974)

    Article  Google Scholar 

  16. Leslie, L.M., Purser, R.J.: Three-dimensional mass-conservating semi-Lagrangian scheme employing forward trajectories. Mon. Wea. Rev. 123, 2551–2566 (1995)

    Article  Google Scholar 

  17. McDonald, A.: Accuracy of multiply-upstream semi-Lagrangian advective schemes II. Mon. Wea. Rev. 115, 1446–1450 (1987)

    Article  Google Scholar 

  18. Pudykiewicz, J., Benoit, R., Staniforth, A.: Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos.-Ocean 23, 267–303 (1985)

    Google Scholar 

  19. Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models - A review. Mon. Wea. Rev. 119, 2206–2223 (1991)

    Article  Google Scholar 

  20. Tanguay, M., Robert, A.: Elimination of the Helmholtz equation associated with the semi-implicit scheme in a grid point model of the shallow water equations. Mon. Wea. Rev. 114, 2154–2162 (1986)

    Article  Google Scholar 

  21. Temperton, C., Hortal, M., Simmons, A.J.: A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127, 111–126 (2001)

    Article  Google Scholar 

  22. Williamson, D.L., Temperton, C.: Normal mode initialization for a multilevel grid-point model. Part II: nonlinear aspects. Mon. Wea. Rev. 109, 744–757 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourchtein, A., Bourchtein, L. (2008). A Splitting Scheme for Large-Scale Atmosphere Dynamics Models. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69848-7_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69840-1

  • Online ISBN: 978-3-540-69848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics