Abstract
Splitting techniques are applied in the context of the semi-Lagrangian semi-implicit approach in order to design computationally efficient and accurate numerical scheme for large-scale atmosphere dynamics. Description of the constructed numerical algorithm is provided and its properties of accuracy and stability are discussed. Performed numerical experiments with daily gridded atmospheric data showed that the developed scheme is efficient and supplies accurate forecast fields using time steps up to one hour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anthes, R.A., Kuo, Y.H., Hsie, E.Y., Low-Nam, S., Bettge, T.W.: Estimation of skill and uncertainty in regional numerical models. Q. J. R. Meteorol. Soc. 115, 763–806 (1989)
Bandy, V., Sweet, R.: A set of three drivers for BOXMG: a black box multigrid solver. Comm. Appl. Num. Methods 8, 563–571 (1992)
Bourchtein, A.: Semi-Lagrangian semi-implicit space splitting regional baroclinic atmospheric model. Appl. Numer. Math. 41, 307–326 (2002)
Bourchtein, A.: Semi-Lagrangian semi-implicit fully splitted hydrostatic atmospheric model. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 25–34. Springer, Heidelberg (2003)
Burridge, D.M.: A split semi-implicit reformulation of the Bushby-Timpson 10 level model. Q. J. R. Meteorol. Soc. 101, 777–792 (1975)
Cohn, S.E., Dee, D.P.: An analysis of the vertical structure equation for arbitrary thermal profiles. Q. J. R. Meteorol. Soc. 115, 143–171 (1989)
Côté, J., Béland, M., Staniforth, A.: Stability of vertical discretization schemes for semi-implicit primitive equations models: theory and applications. Mon. Wea. Rev. 111, 1189–1207 (1983)
Cullen, M.: Modelling atmospheric flows. Acta Numerica 16, 67–154 (2007)
Dendy, J.E.: Black box multigrid. J. Comp. Phys. 48, 366–386 (1982)
Durran, D.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, New York (1999)
Gospodinov, I.G., Spiridonov, V.G., Geleyn, J.-F.: Second-order accuracy of two-time-level semi-Lagrangian schemes. Q. J. R. Meteorol. Soc. 127, 1017–1033 (2001)
Gravel, S., Staniforth, A., Cote, J.: A stability analysis of a family of baroclinic semi-Lagrangian forecast models. Mon. Wea. Rev. 121, 815–824 (1993)
Holton, J.R.: An Introduction to Dynamic Meteorology. Academic Press, San Diego (1992)
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Campridge University Press, Cambridge (2002)
Kasahara, A.: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev. 102, 509–522 (1974)
Leslie, L.M., Purser, R.J.: Three-dimensional mass-conservating semi-Lagrangian scheme employing forward trajectories. Mon. Wea. Rev. 123, 2551–2566 (1995)
McDonald, A.: Accuracy of multiply-upstream semi-Lagrangian advective schemes II. Mon. Wea. Rev. 115, 1446–1450 (1987)
Pudykiewicz, J., Benoit, R., Staniforth, A.: Preliminary results from a partial LRTAP model based on an existing meteorological forecast model. Atmos.-Ocean 23, 267–303 (1985)
Staniforth, A., Côté, J.: Semi-Lagrangian integration schemes for atmospheric models - A review. Mon. Wea. Rev. 119, 2206–2223 (1991)
Tanguay, M., Robert, A.: Elimination of the Helmholtz equation associated with the semi-implicit scheme in a grid point model of the shallow water equations. Mon. Wea. Rev. 114, 2154–2162 (1986)
Temperton, C., Hortal, M., Simmons, A.J.: A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127, 111–126 (2001)
Williamson, D.L., Temperton, C.: Normal mode initialization for a multilevel grid-point model. Part II: nonlinear aspects. Mon. Wea. Rev. 109, 744–757 (1981)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bourchtein, A., Bourchtein, L. (2008). A Splitting Scheme for Large-Scale Atmosphere Dynamics Models. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_51
Download citation
DOI: https://doi.org/10.1007/978-3-540-69848-7_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69840-1
Online ISBN: 978-3-540-69848-7
eBook Packages: Computer ScienceComputer Science (R0)