iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-69848-7_1
A New Construction of Multivariate Public Key Encryption Scheme through Internally Perturbed Plus | SpringerLink
Skip to main content

A New Construction of Multivariate Public Key Encryption Scheme through Internally Perturbed Plus

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5073))

Included in the following conference series:

Abstract

Public key cryptography is an important tool in our modern information society. Multivariate public key cryptosystem (MPKC) is a type of public key cryptosystem with high efficiency. In this paper, firstly, we propose a basic multivariate public key encryption scheme which is efficient but insecure. Secondly, we use the internally perturbed plus modifier to modify the basic scheme, and get a improved scheme which is secure against known types of attacks. Finally, we provide a practical implementation of the improved scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Google Scholar 

  3. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  4. Patarin, J.: Hidden field equations (HFE) and isomorphism of polynomials (IP): Two new families of asymmetric algoritms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  5. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Google Scholar 

  6. Courtois, N.: The security of hidden field equations (HFE) process in cryptology. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Faugere, J., Joux, A.: Algebraic cryptoanalysis Hidden Field Equation (HFE) cryptosystems using Grober bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

    Google Scholar 

  8. Moh, T.: A fast public key system with signature and master key functions. Lecure notes at EE department of standford university (1999)

    Google Scholar 

  9. Wang, L., Chang, F.: Tractable rational map cryptosystems (revised on December 28, 2006), http://eprint.iacr.org/2004/046

  10. Goubin, L., Courtois, N.: Cryptotanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A Medium-Field Multivariate Public Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Ding, J., Schmidt, D.: The new TTM implementation is not secure. In: Proceeding of Inernational Workshop on Coding, Cryptography and Combinatorics (CCC 2003), pp. 106–121 (2003)

    Google Scholar 

  13. Nie, X., Hu, L., Li, J., Updegrove, C., Ding, J.: Breaking a new instance of TTM cryptosystem. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 210–225. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Joux, A., Kunz-Jaquces, S., Muller, F., Ricordel, P.-M.: Cryptanalysis of the tractable rational map cryptosystem. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 258–274. Springer, Heidelberg (2005)

    Google Scholar 

  15. Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High order linearization Equation (HOLE) attack on multivariate public key cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Yang, B., Chen, J.: Building secure tame-like multivariate public key cryptosystems-the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

    Google Scholar 

  17. Coppersmith, D., Stern, J., Vaudeny, S.: The security of the birational permutation signature scheme. J. Cryptology 10(3), 207–221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ars, G., Faugere, J., Imai, H., Kawazoe, M., Sugita, M.: Comparision between XL and Grobner bases algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)

    Google Scholar 

  19. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Yang, B., Chen, J., Courtois, N.: On asymptotic security estimats in XL and Grobner bases related algebraic cryptanalysis. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)

    Google Scholar 

  21. Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. Cambridge Unversity Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Courtois, N., Goubin, L., Patrin, J.: Sflash: Primitive specification (second revised version), Submissions, Sflash, 11 pages (2002), https://www.cosic.east.kuleuven.be/nessie

  23. Courtois, N., Goubin, L., Patrin, J.: Quartz: Primitive specification (second revised version), Submissions, Quartz, 18 pages (2001), https://www.cosic.east.kuleuven.be/nessie

  24. Ding, J.: A new variant of the Matsumoto-Imai through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)

    Google Scholar 

  25. Ding, J., Schmidt, D.: Cryptanalysis of HEFV and the internal perturbation of HFE. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)

    Google Scholar 

  26. Ding, J., Gower, J.: Inoculating multivariate schemes against differential attacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 290–301. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Faugere, J.: A new efficient algorithm for computing Grobner bases(F4). Journal of Pure and Applied Algebra 139, 61–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)

    Google Scholar 

  29. Shamir, A.: Efficient signature schemes based on birational permutations. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Nie, X., Zheng, S., Yang, Y., Zhang, Z. (2008). A New Construction of Multivariate Public Key Encryption Scheme through Internally Perturbed Plus. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69848-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69840-1

  • Online ISBN: 978-3-540-69848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics