Abstract
Public key cryptography is an important tool in our modern information society. Multivariate public key cryptosystem (MPKC) is a type of public key cryptosystem with high efficiency. In this paper, firstly, we propose a basic multivariate public key encryption scheme which is efficient but insecure. Secondly, we use the internally perturbed plus modifier to modify the basic scheme, and get a improved scheme which is secure against known types of attacks. Finally, we provide a practical implementation of the improved scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J.: Hidden field equations (HFE) and isomorphism of polynomials (IP): Two new families of asymmetric algoritms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)
Courtois, N.: The security of hidden field equations (HFE) process in cryptology. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)
Faugere, J., Joux, A.: Algebraic cryptoanalysis Hidden Field Equation (HFE) cryptosystems using Grober bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)
Moh, T.: A fast public key system with signature and master key functions. Lecure notes at EE department of standford university (1999)
Wang, L., Chang, F.: Tractable rational map cryptosystems (revised on December 28, 2006), http://eprint.iacr.org/2004/046
Goubin, L., Courtois, N.: Cryptotanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)
Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A Medium-Field Multivariate Public Key Encryption Scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)
Ding, J., Schmidt, D.: The new TTM implementation is not secure. In: Proceeding of Inernational Workshop on Coding, Cryptography and Combinatorics (CCC 2003), pp. 106–121 (2003)
Nie, X., Hu, L., Li, J., Updegrove, C., Ding, J.: Breaking a new instance of TTM cryptosystem. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 210–225. Springer, Heidelberg (2006)
Joux, A., Kunz-Jaquces, S., Muller, F., Ricordel, P.-M.: Cryptanalysis of the tractable rational map cryptosystem. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 258–274. Springer, Heidelberg (2005)
Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High order linearization Equation (HOLE) attack on multivariate public key cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007)
Yang, B., Chen, J.: Building secure tame-like multivariate public key cryptosystems-the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)
Coppersmith, D., Stern, J., Vaudeny, S.: The security of the birational permutation signature scheme. J. Cryptology 10(3), 207–221 (1997)
Ars, G., Faugere, J., Imai, H., Kawazoe, M., Sugita, M.: Comparision between XL and Grobner bases algorithms. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 338–353. Springer, Heidelberg (2004)
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)
Yang, B., Chen, J., Courtois, N.: On asymptotic security estimats in XL and Grobner bases related algebraic cryptanalysis. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 401–413. Springer, Heidelberg (2004)
Blake, I., Seroussi, G., Smart, N.: Elliptic curves in cryptography. Cambridge Unversity Press, Cambridge (1999)
Courtois, N., Goubin, L., Patrin, J.: Sflash: Primitive specification (second revised version), Submissions, Sflash, 11 pages (2002), https://www.cosic.east.kuleuven.be/nessie
Courtois, N., Goubin, L., Patrin, J.: Quartz: Primitive specification (second revised version), Submissions, Quartz, 18 pages (2001), https://www.cosic.east.kuleuven.be/nessie
Ding, J.: A new variant of the Matsumoto-Imai through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)
Ding, J., Schmidt, D.: Cryptanalysis of HEFV and the internal perturbation of HFE. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 288–301. Springer, Heidelberg (2005)
Ding, J., Gower, J.: Inoculating multivariate schemes against differential attacks. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 290–301. Springer, Heidelberg (2006)
Faugere, J.: A new efficient algorithm for computing Grobner bases(F4). Journal of Pure and Applied Algebra 139, 61–88 (1999)
Fouque, P.-A., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate schemes. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 341–353. Springer, Heidelberg (2005)
Shamir, A.: Efficient signature schemes based on birational permutations. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Z., Nie, X., Zheng, S., Yang, Y., Zhang, Z. (2008). A New Construction of Multivariate Public Key Encryption Scheme through Internally Perturbed Plus. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-69848-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69840-1
Online ISBN: 978-3-540-69848-7
eBook Packages: Computer ScienceComputer Science (R0)