iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-68155-7_18
From High-Level Model to Branch-and-Price Solution in G12 | SpringerLink
Skip to main content

Abstract

The G12 project is developing a software environment for stating and solving combinatorial problems by mapping a high-level model of the problem to an efficient combination of solving methods. Model annotations are used to control this process. In this paper we explain the mapping to branch-and-price solving. G12 supports the selection of specialised sub-problem solvers, the aggregation of identical subproblems, automatic disaggregation when required by search, and the use of specialised branching rules. We demonstrate the benefits of the G12 framework on three examples: a trucking problem, cutting stock, and two-dimensional bin packing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP - a framework to integrate constraint and mixed integer programming. Technical Report 04-19, Zuse Institute Berlin, (2004), http://www.zib.de/Publications/abstracts/ZR-04-19/

  2. Anbil, R., Forrest, J., Pulleyblank, W.: Column generation and the airline crew pairing problem. In: Documenta Mathematica, Extra Volume ICM (1998)

    Google Scholar 

  3. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with a subgradient method. Mathematical Programming 87(3), 385–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: Column generation for solving huge integer programs. Operations Research 46(3), 316–329 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Boland, N., Surendonk, T.: A column generation approach to delivery planning over time with inhomogeneous service providers and service interval constraints. Annals of Operations Research 108, 143–156 (2001)

    Article  MATH  Google Scholar 

  6. Brand, S., Duck, G.J., Puchinger, J., Stuckey, P.J.: Flexible, rule-based constraint model linearisation. In: Hudak, P., Warren, D. (eds.) Practical Aspects of Declarative Languages (PADL 2008). LNCS, vol. 4902, pp. 68–83. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Chabrier, A.: Génération de Colonnes et de Coupes utilisant des sous-problèmes de plus court chemin. PhD thesis, Université d’Angers, France (2002)

    Google Scholar 

  8. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Research 8(1), 101–111 (1960)

    MATH  Google Scholar 

  9. Desaulniers, G., Desrosiers, J., Solomon, M. (eds.): Column Generation. GERAD 25th Anniversary Series. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  10. Duck, G.J., Stuckey, P.J., Brand, S.: ACD term rewriting. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 117–131. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Eremin, A.: Using Dual Values to Integrate Row and Column Generation into Constraint Logic Programming. PhD thesis, Imperial College London (2003)

    Google Scholar 

  12. Garcia de la Banda, M., Marriott, K., Rafeh, R., Wallace, M.: The modelling language Zinc. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 700–705. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Gau, T., Wäscher, G.: CUTGEN1: a problem generator for the standard one-dimensional cutting stock problem. European Journal of Operational Research 84(3), 572–579 (1995)

    Article  MATH  Google Scholar 

  14. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem (part I). Operations Research 9, 849–859 (1961)

    MathSciNet  MATH  Google Scholar 

  15. Gunluk, O., Ladanyi, L., Vries, S.D.: A branch-and-price algorithm and new test problems for spectrum auctions. Management Science 51(3), 391–406 (2005)

    Article  Google Scholar 

  16. Jünger, M., Thienel, S.: The ABACUS system for branch-and-cut-and-price algorithms in integer programming and combinatorial optimization. Software: Practice and Experience 30(11), 1325–1352 (2000)

    Article  MATH  Google Scholar 

  17. Junker, U., Karisch, S.E., Kohl, N., Vaaben, B., Fahle, T., Sellmann, M.: A framework for constraint programming based column generation. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 261–274. Springer, Heidelberg (1999)

    Google Scholar 

  18. Kantorovich, L.V.: Mathematical methods of organizing and planning production. Management Science 6(4), 366–422 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lodi, A., Martello, S., Vigo, D.: Models and bounds for two-dimensional level packing problems. Journal of Combinatorial Optimization 8(3), 363–379 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed INTeger Optimizer. Operations Research Letters 15, 47–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Papadakos, N.: Integrated airline scheduling. Computers and Operations Research, available online (August 27, 2007) (to appear, 2007)

    Google Scholar 

  22. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. European Journal of Operational Research 183(3), 1304–1327 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ralphs, T., Ladanyi, L.: COIN/BCP users manual (2001)

    Google Scholar 

  24. Rousseau, L.-M., Gendreau, M., Pesant, G., Focacci, F.: Solving VRPTWs with constraint programming based column generation. Annals of Operations Research 130(1), 199–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ryan, D.M., Foster, B.: An integer programming approach to scheduling. In: Wren, A. (ed.) Computer scheduling of public transport urban passenger vehicle and crew scheduling, pp. 269–280. North Holland, Amsterdam (1981)

    Google Scholar 

  26. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury, an efficient purely declarative logic programming language. Journal of Logic Programming 29(1-3), 17–64 (1996)

    Article  MATH  Google Scholar 

  27. Stuckey, P.J., Garcia de la Banda, M., Maher, M.J., Marriott, K., Slaney, J.K., Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent models to efficient solutions. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 13–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Van Hentenryck, P., Michel, L.: OPL Script: Composing and controlling models. In: Apt, K.R., Kakas, A.C., Monfroy, E., Rossi, F. (eds.) Compulog Net WS 1999. LNCS (LNAI), vol. 1865, pp. 75–90. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Technical Report U-05.14, Applied Mathematics, University Bordeaux 1, France (2005)

    Google Scholar 

  30. Villeneuve, D., Desrosiers, J., Lübbecke, M.E., Soumis, F.: On compact formulations for integer programs solved by column generation. Annals of Operations Research 139(1), 375–388 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yunes, T.H., Moura, A.V., de Souza, C.C.: A hybrid approach for solving large scale crew scheduling problems. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp. 207–293. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Laurent Perron Michael A. Trick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puchinger, J., Stuckey, P.J., Wallace, M., Brand, S. (2008). From High-Level Model to Branch-and-Price Solution in G12. In: Perron, L., Trick, M.A. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2008. Lecture Notes in Computer Science, vol 5015. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68155-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68155-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68154-0

  • Online ISBN: 978-3-540-68155-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics