Abstract
We report the development of a new six degree-of-freedom (d.o.f.) manipulator. This robot and its task-space controls enable relative tip positioning to better than 25 microns over a singularity-free work volume exceeding 20 cubic centimeters. By virtue of an innovative cable drive design, the robot has zero backlash in five joints and can sustain full extent loads of over three pounds. The robot is applicable to both fine motion manipulation of microsurgical tools and also dexterous handling of larger powered devices for minimally invasive surgery. Our current development emphasis is a teleoperated system for dexterity-enhanced microsurgeries; we believe the new robot will also have useful applications in computer assisted surgeries, e.g. image-guided therapies. In this brief paper, we outline the robot mechanical design, controls implementation, and preliminary evaluations. Our accompanying oral presentation includes a five minute videotape that illustrates engineering laboratory results achieved to date.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Report on NSF Workshop on Computer Assisted Surgery, February 28-March 2, 1993, Washington, D.C. (Orgs., R. H. Taylor and G.A. Bekey).
Proc. Medicine Meets Virtual Reality III, January 19–22, 1995, at San Diego, California, sponsored by the Univ. Calif. San Diego (Publisher: Aligned Management Consultants, San Diego, CA.). Proc. First Intl. Symp.
Medical Robotics and Computer Assisted Surgery (MRCAS’94), September 2224, Pittsburgh, PA (Eds., A.M. DiGioia, I II, T. Kanade, and R. Taylor );
NCI-NASA-SCVIR Workshop on Technology Transfer in Image Guided Therapy, August 5, 1994, San Francisco, CA (Chr., H. Y. Kressel).
Virtual Reality: Scientific and Technological Challenges, a report of the Committee on Virtual Reality Research and Development (Chr., N. Durlach), National Research Council, NAS Press (1994), Washington D.C.
S. Schenker, A. K. Bejczy, W. S. Kim, and S. Lee, “Advanced man-machine interfaces and control architecture for dexterous teleoperations,” in Proc. Oceans ‘81, pp. 1500–1525, Honolulu, HI, October, 1991, and references therein.
H. Das, H. Zak, W. S. Kim, A. K. Bejczy, and P. S. Schenker, “Operator performance with alternative manual modes of control,” Presence, Vol. 1, no. 2, pp. 201–218, Spring 1992;
H. Das, P.S. Schenker, H. Zak, and A. K. Bejczy, “Teleoperated satellite repair experiments,” in Proc. 1992 IEEE-RSJ Intl. Conf. IROS, Raleigh, NC, July.
P. S. Schenker and W. S. Kim, “Remote robotic operations and graphics-based operator interfaces,” in Proc. 5th Intl. Symp. on Robotics and Manufacturing (ISRAM’94), Maui, HI, August 14–17, 1994, and references therein.
P. S. Schenker, W. S. Kim, and A. K. Bejczy, “Remote robotic operations at 3000 miles - dexterous teleoperation with time-delay via calibrated virtual reality task display,” in Proc. Medicine Meets Virtual Reality II, San Diego, CA, January, 1994.
P. S. Schenker, S. F. Peters, E. D. Paljug, and W. S. Kim, “Intelligent viewing control for robotic and automation systems,” in Sensor Fusion VII, in Proc. SPIE 2355, Boston, MA, October, 1994.
Hunter, T. Doukoglou, S. Lafontaine, P. Charette, L. Jones, M. Sager, G. Mallinson, P. Hunter, “A teleoperated microsurgical robot and associated virtual environment for eye surgery,” Presence, Vol. 2, no. 4, pp. 265–280, fall, 1993.
Salcudean and J. Yan, `Towards a force-reflecting, motion-scaling system for microsurgery,“ in Proc. 1994 IEEE Intl. Conf. Robotics and Automation, May, San Diego, CA;
S. Salcudean, N.M. Wong, and R.L. Hollis, “A force-reflecting teleoperation system with magnetically levitated master and wrist,” in Proc. 1992 IEEE Intl. Conf. Robotics and Automation, Nice, France, May.
K. W. Grace, J. E. Colgate, M. R. Glucksberg, and J. H. Chun, “A six degree-of-freedom manipulator for ophthalmic surgery,” in Proc. 1993 IEEE Intl. Conf. Robotics and Automation, Atlanta, GA, May.
J. W. Hill, P. S. Green, J. F. Jensen, Y. Gorfu, and Ajit S. Shah, “Telepresence surgery demonstration system,” in Proc. 1994 IEEE Intl. Conf. Robotics and Automation, San Diego, CA, May
Rodriguez, “Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics,” Journal of Robotics and Automation, Vol. 3, No. 6, pp. 624–639, 1987
G. Rodriguez, K. Kreutz, and A. Jain, “A spatial operator algebra for manipulator modeling and control, International Journal of Robotics Research, Vol. 10, No. 4, pp. 371–381, 1991.
Robot Assisted Microsurgery project accomplishments for FY94 - demonstration of robot joint motion, Cartesian control, and precise tip control,“ Production AVC-94–228 (VHS Videotape), September 1, 1994, Audiovisual Services Office, Jet Propulsion Laboratory: E. Barlow, C. Boswell, H. Das, S. Lee, T. Ohm, E. Paljug, G. Rodriguez, and P. Schenker(PI), for NASA Headquarters.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1995 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schenker, P.S., Das, H., Ohm, T.R. (1995). A New Robot for High Dexterity Microsurgery. In: Ayache, N. (eds) Computer Vision, Virtual Reality and Robotics in Medicine. CVRMed 1995. Lecture Notes in Computer Science, vol 905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49197-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-49197-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-59120-7
Online ISBN: 978-3-540-49197-2
eBook Packages: Springer Book Archive