Abstract
The classificatory power of a pattern is measured by how well it separates two given sets of strings. This paper gives practical algorithms to find the fixed/variable-length-don’t-care pattern (FVLDC pattern) and approximate FVLDC pattern which are most classificatory for two given string sets. We also present algorithms to discover the best window-accumulated FVLDC pattern and window-accumulated approximate FVLDC pattern. All of our new algorithms run in practical amount of time by means of suitable pruning heuristics and fast pattern matching techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeza-Yates, R., Navarro, G.: Faster approximate string matching. Algorithmica 23(2), 127–158 (1999)
Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)
Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algorithm to find the best subsequence patterns. In: Morishita, S., Arikawa, S. (eds.) DS 2000. LNCS (LNAI), vol. 1967, pp. 141–154. Springer, Heidelberg (2000)
Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 435–440. Springer, Heidelberg (2001)
Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering best variable-length-don’t-care patterns. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS 2002. LNCS, vol. 2534, pp. 86–97. Springer, Heidelberg (2002)
Myers, E.W., Miller, W.: Approximate matching of regular expressions. Bulletin of Mathematical Biology 51(1), 5–37 (1989)
Navarro, G., Raffinot, M.: Flexible pattern matching in strings: Practical on-line search algorithms for texts and biological sequences. Cambridge University Press, Cambridge (2002)
Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., Arikawa, S.: Knowledge acquisition from amino acid sequences by machine learning system BONSAI. Trans. of Information Processing Society of Japan 35(10), 2009–2018 (1994)
Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S.: Discovering most classificatory patterns for very expressive pattern classes. Technical Report DOI-TR-CS-219, Department of Informatics, Kyushu University (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S. (2003). Discovering Most Classificatory Patterns for Very Expressive Pattern Classes. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds) Discovery Science. DS 2003. Lecture Notes in Computer Science(), vol 2843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39644-4_50
Download citation
DOI: https://doi.org/10.1007/978-3-540-39644-4_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20293-6
Online ISBN: 978-3-540-39644-4
eBook Packages: Springer Book Archive