iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-32003-6_1
Evolutionary Biclustering of Microarray Data | SpringerLink
Skip to main content

Evolutionary Biclustering of Microarray Data

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

Abstract

In this work, we address the biclustering of gene expression data with evolutionary computation, which has been proven to have excellent performance on complex problems. In expression data analysis, the most important goal may not be finding the maximum bicluster, as it might be more interesting to find a set of genes showing similar behavior under a set of conditions. Our approach is based on evolutionary algorithms and searches for biclusters following a sequential covering strategy. In addition, we pay special attention to the fact of looking for high quality biclusters with large variation. The quality of biclusters found by our approach is discussed by means of the analysis of yeast and colon cancer datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. Journal of Computational Biology 6(3–4), 281–297 (1999)

    Article  Google Scholar 

  2. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 19(sup. 2), 196–205 (2002)

    Google Scholar 

  3. Alon, U., Barkai, N., Notterman, D.A., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. National Academy of Sciences of the United States of America 96, 6745–6750 (1999)

    Article  Google Scholar 

  4. Mirkin, B.: Mathematical classification and Clustering. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  5. Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Congress on Evolutionary Computation (CEC 2004), Piscataway, NJ, pp. 166–173. IEEE, Los Alamitos (2004)

    Google Scholar 

  6. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th International Conference on Itelligent Systems for Molecular Biology (ISMB 2000), pp. 93–103 (2000)

    Google Scholar 

  7. Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  8. Getz, G., Levine, E., Domany, E.: Coupled two–way clustering analysis of gene microarray data. In: Proceedings of the Natural Academy of Sciences, USA, pp. 12079–12084 (2000)

    Google Scholar 

  9. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  10. Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Technical report, Stanford University (2000)

    Google Scholar 

  11. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 394–405 (2002)

    Google Scholar 

  12. Yang, J., Wang, W., Wang, H., Yu, P.S.: δ–clusters: Capturing subspace correlation in a large data set. In: Proceedings of the 18th IEEE Conference on Data Engineering, pp. 517–528 (2002)

    Google Scholar 

  13. Yang, J., Wang, W., Wang, H., Yu, P.S.: Enhanced biclustering on expression data. In: Proceedings of the 3rd IEEE Conference on Bioinformatics and Bioengineering, pp. 321–327 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguilar–Ruiz, J.S., Divina, F. (2005). Evolutionary Biclustering of Microarray Data. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics