iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-30499-9_162
Applications of Independent Component Analysis | SpringerLink
Skip to main content

Applications of Independent Component Analysis

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

Blind source separation (BSS) is a computational technique for revealing hidden factors that underlie sets of measurements or signals. The most basic statistical approach to BSS is Independent Component Analysis (ICA). It assumes a statistical model whereby the observed multivariate data are assumed to be linear or nonlinear mixtures of some unknown latent variables with nongaussian probability densities. The mixing coefficients are also unknown. By ICA, these latent variables can be found. This article gives the basics of linear ICA and reviews the efficient FastICA algorithm. Then, the paper lists recent applications of BSS and ICA on a variety of problem domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S., Cichocki, A., Makino, S., Murata, N. (eds.): Proc. of the 4th Int. Workshop on Independent Component Analysis and Signal Separation, Nara, Japan, April 1-4. Brain Science Institute, Riken (2003)

    Google Scholar 

  2. Amari, S.I., Cichocki, A., Yang, H.H.: A new learning algorithm for blind source separation. In: Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  3. Attias, H.: Independent factor analysis. Neural Computation 11(4), 803–851 (1999)

    Article  Google Scholar 

  4. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  5. Cardoso, J.-F.: Source separation using higher order moments. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 1989), Glasgow, UK, pp. 2109–2112 (1989)

    Google Scholar 

  6. Cardoso, J.F., Jutten, C., Loubaton, P. (eds.): Proc. of the 1st Int. Workshop on Independent Component Analysis and Signal Separation, Aussois, France, January 11–15. INPG, Grenoble (1999)

    Google Scholar 

  7. Cardoso, J.-F., Hvam Laheld, B.: Equivariant adaptive source separation. IEEE Trans. on Signal Processing 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  8. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley, New York (2002)

    Book  Google Scholar 

  9. Cichocki, A., Unbehauen, R.: Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. on Circuits and Systems 43(11), 894–906 (1996)

    Article  Google Scholar 

  10. Comon, P.: Independent component analysis – a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  11. The FastICA MATLAB package, Available at, http://www.cis.hut.fi/projects/ica/fastica/

  12. Girolami, M. (ed.): Advances in Independent Component Analysis. Springer, London (2000)

    MATH  Google Scholar 

  13. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  14. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  15. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  16. Hyvärinen, A., Oja, E.: Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing 64(3), 301–313 (1998)

    Article  MATH  Google Scholar 

  17. Jutten, C., Herault, J.: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  18. Lee, T.-W.: Independent Component Analysis – Theory and Applications. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  19. Lee, T.-W., Jung, T.-P., Makeig, S., Sejnowski, T. (eds.): Proc. of the 3rd Int. Workshop on Independent Component Analysis and Signal Separation, San Diego, CA, December 9–13. Salk Institute, CA (2001)

    Google Scholar 

  20. Pajunen, P., Karhunen, J. (eds.): Proc. of the 2nd Int. Workshop on Independent Component Analysis and Blind Signal Separation, Helsinki, Finland, June 19–22. Otamedia, Espoo (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oja, E. (2004). Applications of Independent Component Analysis. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_162

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_162

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics