Abstract
Blind source separation (BSS) is a computational technique for revealing hidden factors that underlie sets of measurements or signals. The most basic statistical approach to BSS is Independent Component Analysis (ICA). It assumes a statistical model whereby the observed multivariate data are assumed to be linear or nonlinear mixtures of some unknown latent variables with nongaussian probability densities. The mixing coefficients are also unknown. By ICA, these latent variables can be found. This article gives the basics of linear ICA and reviews the efficient FastICA algorithm. Then, the paper lists recent applications of BSS and ICA on a variety of problem domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amari, S., Cichocki, A., Makino, S., Murata, N. (eds.): Proc. of the 4th Int. Workshop on Independent Component Analysis and Signal Separation, Nara, Japan, April 1-4. Brain Science Institute, Riken (2003)
Amari, S.I., Cichocki, A., Yang, H.H.: A new learning algorithm for blind source separation. In: Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)
Attias, H.: Independent factor analysis. Neural Computation 11(4), 803–851 (1999)
Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)
Cardoso, J.-F.: Source separation using higher order moments. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 1989), Glasgow, UK, pp. 2109–2112 (1989)
Cardoso, J.F., Jutten, C., Loubaton, P. (eds.): Proc. of the 1st Int. Workshop on Independent Component Analysis and Signal Separation, Aussois, France, January 11–15. INPG, Grenoble (1999)
Cardoso, J.-F., Hvam Laheld, B.: Equivariant adaptive source separation. IEEE Trans. on Signal Processing 44(12), 3017–3030 (1996)
Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing. Wiley, New York (2002)
Cichocki, A., Unbehauen, R.: Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. on Circuits and Systems 43(11), 894–906 (1996)
Comon, P.: Independent component analysis – a new concept? Signal Processing 36, 287–314 (1994)
The FastICA MATLAB package, Available at, http://www.cis.hut.fi/projects/ica/fastica/
Girolami, M. (ed.): Advances in Independent Component Analysis. Springer, London (2000)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks 10(3), 626–634 (1999)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)
Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)
Hyvärinen, A., Oja, E.: Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing 64(3), 301–313 (1998)
Jutten, C., Herault, J.: Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)
Lee, T.-W.: Independent Component Analysis – Theory and Applications. Kluwer, Dordrecht (1998)
Lee, T.-W., Jung, T.-P., Makeig, S., Sejnowski, T. (eds.): Proc. of the 3rd Int. Workshop on Independent Component Analysis and Signal Separation, San Diego, CA, December 9–13. Salk Institute, CA (2001)
Pajunen, P., Karhunen, J. (eds.): Proc. of the 2nd Int. Workshop on Independent Component Analysis and Blind Signal Separation, Helsinki, Finland, June 19–22. Otamedia, Espoo (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oja, E. (2004). Applications of Independent Component Analysis. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_162
Download citation
DOI: https://doi.org/10.1007/978-3-540-30499-9_162
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23931-4
Online ISBN: 978-3-540-30499-9
eBook Packages: Springer Book Archive