iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-30217-9_27
Control of Bloat in Genetic Programming by Means of the Island Model | SpringerLink
Skip to main content

Control of Bloat in Genetic Programming by Means of the Island Model

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

This paper presents a new proposal for reducing bloat in Genetic Programming. This proposal is based in a well-known parallel evolutionary model: the island model. We firstly describe the theoretical motivation for this new approach to the bloat problem, and then we present a set of experiments that gives us evidence of the findings extracted from the theory. The experiments have been performed on a representative problem extracted from the GP field: the even parity 5 problem. We analyse the evolution of bloat employing different settings for the parameters employed. The conclusion is that the Island Model helps to prevent the bloat phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Papadopoulos, P.M., Katz, M.J., Bruno, G.: NPACI Rocks: Tools and Techniques for Easily Deploying Manageable Linux Clusters. In: Concurrency and Computation: Practice and Experience, June - July 2003, vol. 15(7-8), pp. 707–725 (2003)

    Google Scholar 

  2. Koza, J.R.: Genetic Programming. On the programming of computers by means of natural selection. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Langdom, W., Poli, R.: Fitness causes bloat. In: Chawdhry, P.K., et al. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer, London (1997)

    Google Scholar 

  4. Banzhaf, W., Langdon, W.B.: Some Considerations on the Reason for Bloat. Genetic Programming and Evolvable Machines 3, 81-1 (2002)

    Google Scholar 

  5. Langdom, W.B., Poli, R.: Foundations of Genetic Programming. In: Convergence and bloat, pp. 193–217. Springer, Heidelberg (2001)

    Google Scholar 

  6. Langdon, W.B.: Quadratic Bloat in Genetic Programming. In: proceedings of the 2000 Genetic and Evolutionary Computation Conference (2000)

    Google Scholar 

  7. Fernández, F.: Parallel and Distributed Genetic Programming models, with application to logic synthesis on FPGAs, PhD Thesis. Universidad de Extremadura (February 2001)

    Google Scholar 

  8. Fernández, F., Tomassini, M., Vanneschi, L.: An Empirical Study of Multipopulation Genetic Programming. Genetic Programming and Evolvable Machines 4, 21–51 (2003)

    Article  MATH  Google Scholar 

  9. Galeano, G., Fernández, F., Tomassini, M., Vanneschi, L.: Studying the Influence of Synchronous and Asynchronous Parallel GP on Programs Length Evolution. In: Proceedings of Conference on Evolutionary Computation (2002)

    Google Scholar 

  10. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic PublishersISBN 0-7923-7221-2. vol. 1 of the Book Series on Genetic Algorithms and Evolutionary Computation

    Google Scholar 

  11. Punch, W.F.: How effective are multiple populations in Genetic Programming. Genetic Programming 1998. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Goldberg, D., Iba, H., Riolo, R.L. (eds.) Proceedings of the Third Annual Conference, pp. 308–313. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  12. Tomassini, M., Fernández, F., Vanneschi, L., Bucher, L.: An MPI-Based Tool for Distributed Genetic Programming. In: Proceedings of IEEE International Conference on Cluster Computing CLUSTER2000, pp. 209–216. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  13. Soule, T.: Exons and code growth in genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 142–151. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Luke, S.: Modification Point Depth and Genome Growth in Genetic Programming. Evolutionary Computation 11(1), 67 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández-de-Vega, F., Gil, G.G., Gómez Pulido, J.A., Guisado, J.L. (2004). Control of Bloat in Genetic Programming by Means of the Island Model. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics