Abstract
This work presents a partitioning method for clustering symbolic interval-type data using a dynamic cluster algorithm with adaptive Chebyshev distances. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare interval-type data, the method uses an adaptive Chebyshev distance that changes for each cluster according to its intra-class structure at each iteration of the algorithm. Experiments with real and artificial interval-type data sets demonstrate the usefulness of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bobou, A., Ribeyre, F.: Mercury in the food web: accumulation and transfer mechanisms. In: Sigrel, A., Sigrel, H. (eds.) Metal Ions in Biological Systems, pp. 289–319. M. Dekker, New York (1988)
Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Berlin (2000)
Chavent, M., Lechevallier, Y.: Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: Sokolowsky, Bock, H.H., Jaguja, K. (eds.) Classification, Clustering and Data Analysis (IFCS 2002), pp. 53–59. Springer, Heidelberg (2002)
Diday, E., Govaert, G.: Classification Automatique avec Distances Adaptatives. R.A.I.R.O. Informatique Computer Science 11(4), 329–349 (1977)
Diday, E., Simon, J.C.: Clustering analysis. In: Fu, K.S. (ed.) Digital Pattern Clasification, pp. 47–94. Springer, Berlin (1976)
Govaert, G.: Classification automatique et distances adaptatives. Thèse de 3ème cycle, Mathématique appliquée, Université Paris VI (1975)
Hubert, L., Arabie, P.: Comparing Partitions. Journal of Classification 2, 193–218 (1985)
Milligan, G.W.: Clustering Validation: results and implications for applied analysis. In: Arabie, P., Hubert, L.J., De Soete, G. (eds.) Clustering and Classification, pp. 341–375. Word Scientific, Singapore (1996)
Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of interval data based on city-block distances. Pattern Recognition Letters 25(3), 353–365 (2004)
Verde, R., De Carvalho, F.A.T., Lechevallier, Y.: A dynamical clustering algorithm for symbolic data. In: Diday, E., Lechevallier, Y. (eds.) Tutorial on Symbolic Data Analysis (Gfkl 2001), pp. 59–72 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de A.T. de Carvalho, F., de Souza, R.M.C.R., Silva, F.C.D. (2004). A Clustering Method for Symbolic Interval-Type Data Using Adaptive Chebyshev Distances. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-28645-5_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23237-7
Online ISBN: 978-3-540-28645-5
eBook Packages: Springer Book Archive