iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-28645-5_27
A Clustering Method for Symbolic Interval-Type Data Using Adaptive Chebyshev Distances | SpringerLink
Skip to main content

A Clustering Method for Symbolic Interval-Type Data Using Adaptive Chebyshev Distances

  • Conference paper
Advances in Artificial Intelligence – SBIA 2004 (SBIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3171))

Included in the following conference series:

Abstract

This work presents a partitioning method for clustering symbolic interval-type data using a dynamic cluster algorithm with adaptive Chebyshev distances. This method furnishes a partition and a prototype for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare interval-type data, the method uses an adaptive Chebyshev distance that changes for each cluster according to its intra-class structure at each iteration of the algorithm. Experiments with real and artificial interval-type data sets demonstrate the usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bobou, A., Ribeyre, F.: Mercury in the food web: accumulation and transfer mechanisms. In: Sigrel, A., Sigrel, H. (eds.) Metal Ions in Biological Systems, pp. 289–319. M. Dekker, New York (1988)

    Google Scholar 

  2. Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Berlin (2000)

    Google Scholar 

  3. Chavent, M., Lechevallier, Y.: Dynamical Clustering Algorithm of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance. In: Sokolowsky, Bock, H.H., Jaguja, K. (eds.) Classification, Clustering and Data Analysis (IFCS 2002), pp. 53–59. Springer, Heidelberg (2002)

    Google Scholar 

  4. Diday, E., Govaert, G.: Classification Automatique avec Distances Adaptatives. R.A.I.R.O. Informatique Computer Science 11(4), 329–349 (1977)

    MathSciNet  Google Scholar 

  5. Diday, E., Simon, J.C.: Clustering analysis. In: Fu, K.S. (ed.) Digital Pattern Clasification, pp. 47–94. Springer, Berlin (1976)

    Google Scholar 

  6. Govaert, G.: Classification automatique et distances adaptatives. Thèse de 3ème cycle, Mathématique appliquée, Université Paris VI (1975)

    Google Scholar 

  7. Hubert, L., Arabie, P.: Comparing Partitions. Journal of Classification 2, 193–218 (1985)

    Article  Google Scholar 

  8. Milligan, G.W.: Clustering Validation: results and implications for applied analysis. In: Arabie, P., Hubert, L.J., De Soete, G. (eds.) Clustering and Classification, pp. 341–375. Word Scientific, Singapore (1996)

    Google Scholar 

  9. Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of interval data based on city-block distances. Pattern Recognition Letters 25(3), 353–365 (2004)

    Article  Google Scholar 

  10. Verde, R., De Carvalho, F.A.T., Lechevallier, Y.: A dynamical clustering algorithm for symbolic data. In: Diday, E., Lechevallier, Y. (eds.) Tutorial on Symbolic Data Analysis (Gfkl 2001), pp. 59–72 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de A.T. de Carvalho, F., de Souza, R.M.C.R., Silva, F.C.D. (2004). A Clustering Method for Symbolic Interval-Type Data Using Adaptive Chebyshev Distances. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28645-5_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23237-7

  • Online ISBN: 978-3-540-28645-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics