iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-540-24698-5_21
A Geometric Approach to the Bisection Method | SpringerLink
Skip to main content

A Geometric Approach to the Bisection Method

  • Conference paper
LATIN 2004: Theoretical Informatics (LATIN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2976))

Included in the following conference series:

  • 1006 Accesses

Abstract

The bisection method is the consecutive bisection of a triangle by the median of the longest side. This paper introduces a taxonomy of triangles that precisely captures the behavior of the bisection method. Our main result is an asymptotic upper bound for the number of similarity classes of triangles generated on a mesh obtained by iterative bisection, which previously was known only to be finite. We also prove that the number of directions on the plane given by the sides of the triangles generated is finite. Additionally, we give purely geometric and intuitive proofs of classical results for the bisection method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adler, A.: On the Bisection Method for Triangles. Mathematics of Computation 40(162), 571–574 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kearfott, B.: A Proof of Convergence and an Error Bound for the Method of Bisection in Rn. Mathematics of Computation 32(144), 1147–1153 (1978)

    MATH  MathSciNet  Google Scholar 

  3. O’Rourke, J.: Computational Geometry Column 23. International Journal of Computational Geometry & Applications 4(2), 239–242 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Rivara, M.C.: Algorithms for refining triangular grids suitable for adaptive and multigrid techniques. International journal for numerical methods in Engineering 20, 745–756 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rivara, M.-C., Irribarren, G.: The 4-Triangles Longest-side Partition of Triangles and Linear Refinement Algorithms. Mathematics of Computation 65(216), 1485–1502 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rivara, M.C., Levin, C.: A 3d Refinement Algorithm for adaptive and multigrid Techniques. Communications in Applied Numerical Methods 8, 281–290 (1992)

    Article  MATH  Google Scholar 

  7. Rosenberg, I.G., Stenger, F.: A Lower Bound on the Angles of Triangles Constructed by Bisecting the Longest Side. Mathematics of Computation 29(130), 390–395 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Stynes, M.: On Faster Convergence of the Bisection Method for certain Triangles. Mathematics of Computation 33, 1195–1202 (1979)

    Article  MathSciNet  Google Scholar 

  9. Stynes, M.: On Faster Convergence of the Bisection Method for all Triangles. Mathematics of Computation 35(152), 1195–1202 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutierrez, C., Gutierrez, F., Rivara, MC. (2004). A Geometric Approach to the Bisection Method. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24698-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21258-4

  • Online ISBN: 978-3-540-24698-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics