Abstract
The automotive industry has recently invested considerable efforts into increasing a level of automation as well as an ever-tighter integration with other vehicles, traffic infrastructure and cloud services. Novel Advanced Driver Assistance Systems (ADAS) features and Automated Driving Functions (ADF) drive the need for advances and novel engineering solutions (especially with respect to safety and security). However, they are highly relying on existing components developed in the traditional automotive development landscape. Just as safety-related solutions and mindset became common sense in the development phases in the late 20th century, the automotive domain must now consider novel constraints originating from highly automated and distributed driving functionalities. These cannot be supervised by drivers as an integral part of the development of modern vehicles. Unfortunately, there is still a lack of experience with development approaches for automated driving and safety engineering of such automated functionalities which have no driver in the loop for monitoring. In the current transition phase more and more automated driving functions become integrated in conventional vehicles and thus relay on safety components developed in the light of conventional passenger vehicle usage. This paper concentrates on the constraints and additional considerations to be taken into account when developing or integrating existing safety-related components developed for conventional vehicles in the context of highly automated or autonomous vehicles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
AUTOSAR Development Cooperation. Technical Safety Concept Status Report. Technical Report Document Version: 1.1.0, Revision 2, AUTOSAR development cooperation, October 2010
Bergenhem, C., et al.: How to reach complete safety requirement refinement for autonomous vehicles. In: CARS2015 - Critical Automotive Applications: Robustness & Safety (2015)
Boehringer, K., Kroh. M.: Funktionale Sicherheit in der Praxis, July 2013
Druml, N., et al.: PRYSTINE - PRogrammable sYSTems for INtelligence in automobilEs. In: Under review at DSD2018 (2018)
Ebert, C.: Functional safety industry best practices for introducing and using ISO 26262. In: SAE Technical Paper. SAE International, April 2013
European Automobile Manufacturers Association. The Automobile Industry Pocket Guide 2016–2017. Technical report, European Automobile Manufacturers Association (2016)
Gebhardt, V., Rieger, G., Mottok, J., Giesselbach, C.: Funktionale Sicherheit nach ISO 262626 - Ein Praxisleitfaden zur Umsetzung, vol. 1. Auflage.dpunkt.verlag (2013)
Hoerwick, M., Siedersberger, K.-H.: Strategy and architecture of a safety concept for fully automatic and autonomous driving assistance systems. In: 2010 IEEE Intelligent Vehicles Symposium University of California (2010)
ISO - International Organization for Standardization. IEC 61508 Functional safety of electrical/electronic/programmable electronic safety-related systems
ISO - International Organization for Standardization. IEC 60812 Analysis techniques for system reliability - Procedure for failure mode and effects analysis (FMEA) (2006)
ISO - International Organization for Standardization. IEC 61025 Fault tree analysis (FTA), December 2006
ISO - International Organization for Standardization. ISO 26262 Road vehicles Functional Safety Part 1–10 (2011)
ISO - International Organization for Standardization. SS 7740 Road vehicles Functional Safety Process Assessment Model (2012)
ISO - International Organization for Standardization. ISO/WD PAS 21448 Road vehicles - Safety of the intended functionality, work-in-progress
Kocsis, M., Sussmann, N., Buyer, J., Zoellner, R.: Safety concept for autonomous vehicles that operate in pedestrian areas. In: Proceedings of the 2017 IEEE/SICE International Symposium on System Integration (2017)
Koong, C.-S., et al.: Automatic testing environment for multi-core embedded software–ATEMES. J. Syst. Softw. 85(1), 43–60 (2012)
Messnarz, R., Kreiner, C., Riel, A.: Implementing functional safety standards has an impact on system and SW design - required knowledge and competencies (SafEUr). Software Quality Professional (2015)
Reschka, A.: Safety Concept for Autonomous Vehicles (2016)
Ruiz, A., Melzi, A., Kelly, T.: Systematic application of ISO 26262 on a SEooC: Support by applying a systematic reuse approach. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 393–396, March 2015
SafEUr Training Material Committee. ECQA Certified Functional Safety Manager Training Material. Training dossier, April 2013
Schneider, R., et al.: Safety Element out of Context - A Practical Approach. In: SAE International Technical Papers, number 2012–01-0033, April 2012
Scuro, G.: Automotive industry: Innovation driven by electronics (2012). http://embedded-computing.com/articles/automotive-industry-innovation-driven-electronics/
The SPICE User Group: Automotive SPICE Process Assessment/Reference Model V3.0, July 2015
Acknowledgments
This work is dedicated to our co-author late Christian Kreiner, who was impressive for many reasons and has been a wonderful teacher, co-worker, leader and friend. You have made working with you an exciting, inspiring and memorable experience. We will always be grateful to you for your support and kindness.
This work is partially supported by the DEIS and GECCO 2 project. The research leading to these results has received funding from the ARTEMIS Joint Undertaking under grant agreement nr 732242 (project DEIS).
Further the authors would like to acknowledge the financial support of the COMET K2 - Competence Centers for Excellent Technologies Programme of the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry of Science, Research and Economy (bm-wfw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Macher, G., Veledar, O., Bachinger, M., Kager, A., Stolz, M., Kreiner, C. (2018). Integration Analysis of a Transmission Unit for Automated Driving Vehicles. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2018. Lecture Notes in Computer Science(), vol 11094. Springer, Cham. https://doi.org/10.1007/978-3-319-99229-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-99229-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99228-0
Online ISBN: 978-3-319-99229-7
eBook Packages: Computer ScienceComputer Science (R0)