iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-94144-8_15
QBF as an Alternative to Courcelle’s Theorem | SpringerLink
Skip to main content

QBF as an Alternative to Courcelle’s Theorem

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2018 (SAT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10929))

Abstract

We propose reductions to quantified Boolean formulas (QBF) as a new approach to showing fixed-parameter linear algorithms for problems parameterized by treewidth. We demonstrate the feasibility of this approach by giving new algorithms for several well-known problems from artificial intelligence that are in general complete for the second level of the polynomial hierarchy. By reduction from QBF we show that all resulting algorithms are essentially optimal in their dependence on the treewidth. Most of the problems that we consider were already known to be fixed-parameter linear by using Courcelle’s Theorem or dynamic programming, but we argue that our approach has clear advantages over these techniques: on the one hand, in contrast to Courcelle’s Theorem, we get concrete and tight guarantees for the runtime dependence on the treewidth. On the other hand, we avoid tedious dynamic programming and, after showing some normalization results for CNF-formulas, our upper bounds often boil down to a few lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To give the reader an impression: \(2^{2^5} \approx 4.2\times 10^9\) and already \(2^{2^6} \approx 1.8\times 10^{19}\).

References

  1. Arieli, O., Caminada, M.W.A.: A general QBF-based formalization of abstract argumentation theory. In: Verheij, B., Szeider, S., Woltran, S. (eds.) Computational Models of Argument, COMMA 2012, pp. 105–116 (2012)

    Google Scholar 

  2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

    Article  MathSciNet  Google Scholar 

  3. Atserias, A., Oliva, S.: Bounded-width QBF is PSPACE-complete. J. Comput. Syst. Sci. 80(7), 1415–1429 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: An o(c\({}^{\wedge }\)k n) 5-approximation algorithm for treewidth. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, pp. 499–508 (2013)

    Google Scholar 

  6. Cadoli, M., Lenzerini, M.: The complexity of propositional closed world reasoning and circumscription. J. Comput. Syst. Sci. 48(2), 255–310 (1994)

    Article  MathSciNet  Google Scholar 

  7. Chen, H.: Quantified constraint satisfaction and bounded treewidth. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence, ECAI 2004, pp. 161–165 (2004)

    Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  9. DIMACS: Satisfiability: Suggested Format. DIMACS Challenge. DIMACS (1993)

    Google Scholar 

  10. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  Google Scholar 

  11. Dunne, P.E.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10–15), 701–729 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. Intell. 141(1/2), 187–203 (2002)

    Article  MathSciNet  Google Scholar 

  13. Dvorák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186, 1–37 (2012)

    Article  MathSciNet  Google Scholar 

  14. Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified boolean formulas. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.) Computational Models of Argument, COMMA 2006, pp. 133–144 (2006)

    Google Scholar 

  15. Eiben, E., Ganian, R., Ordyniak, S.: Using decomposition-parameters for QBF: mind the prefix! In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 964–970 (2016)

    Google Scholar 

  16. Eiben, E., Ganian, R., Ordyniak, S.: Small resolution proofs for QBF using dependency treewidth. CoRR, abs/1711.02120 (2017)

    Google Scholar 

  17. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are \(\varPi ^{p}_2\)-complete. Theor. Comput. Sci. 114(2), 231–245 (1993)

    Article  Google Scholar 

  18. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)

    Article  MathSciNet  Google Scholar 

  19. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discrete Appl. Math. 156(4), 511–529 (2008)

    Article  MathSciNet  Google Scholar 

  20. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1–3), 3–31 (2004)

    Article  MathSciNet  Google Scholar 

  21. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

    Article  MathSciNet  Google Scholar 

  22. Ignatiev, A., Previti, A., Liffiton, M., Marques-Silva, J.: Smallest MUS extraction with minimal hitting set dualization. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 173–182. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_13

    Chapter  Google Scholar 

  23. Jakl, M., Pichler, R., Rümmele, S., Woltran, S.: Fast counting with bounded treewidth. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 436–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_31

    Chapter  Google Scholar 

  24. Janota, M., Marques-Silva, J.: On deciding MUS membership with QBF. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 414–428. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_32

    Chapter  Google Scholar 

  25. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

    Book  MATH  Google Scholar 

  26. Lagniez, J.-M., Biere, A.: Factoring out assumptions to speed up MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_21

    Chapter  Google Scholar 

  27. Lagniez, J.-M., Lonca, E., Mailly, J.-G.: CoQuiAAS: a constraint-based quick abstract argumentation solver. In: 27th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, pp. 928–935 (2015)

    Google Scholar 

  28. Lampis, M., Mitsou, V.: Treewidth with a quantifier alternation revisited (2017)

    Google Scholar 

  29. Langer, A., Reidl, F., Rossmanith, P., Sikdar, S.: Practical algorithms for MSO model-checking on tree-decomposable graphs. Comput. Sci. Rev. 13–14, 39–74 (2014)

    Article  Google Scholar 

  30. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)

    Article  MathSciNet  Google Scholar 

  31. Lifschitz, V.: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3. Chapter Circumscription, pp. 297–352. Oxford University Press Inc., New York (1994)

    Google Scholar 

  32. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 105, 41–72 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Marx, D., Mitsou, V.: Double-exponential and triple-exponential bounds for choosability problems parameterized by treewidth. In: 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, pp. 28:1–28:15 (2016)

    Google Scholar 

  34. McCarthy, J.: Applications of circumscription to formalizing common-sense knowledge. Artif. Intell. 28(1), 89–116 (1986)

    Article  MathSciNet  Google Scholar 

  35. Pan, G., Vardi, M.Y.: Fixed-parameter hierarchies inside PSPACE. In: 21st IEEE Symposium on Logic in Computer Science, LICS 2006, pp. 27–36 (2006)

    Google Scholar 

  36. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete Algorithms 8(1), 50–64 (2010)

    Article  MathSciNet  Google Scholar 

  37. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: a compendium. SIGACT News 33(3), 32–49 (2002)

    Article  Google Scholar 

  38. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_14

    Chapter  Google Scholar 

Download references

Acknowledgments

Most of the research in this paper was performed during a stay of the first and third authors at CRIL that was financed by the project PEPS INS2I 2017 CODA. The second author is thankful for many valuable discussions with members of CRIL, in particular Jean-Marie Lagniez, Emmanuel Lonca and Pierre Marquis, on the topic of this article.

Moreover, the authors would like to thank the anonymous reviewers whose numerous helpful remarks allowed to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valia Mitsou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lampis, M., Mengel, S., Mitsou, V. (2018). QBF as an Alternative to Courcelle’s Theorem. In: Beyersdorff, O., Wintersteiger, C. (eds) Theory and Applications of Satisfiability Testing – SAT 2018. SAT 2018. Lecture Notes in Computer Science(), vol 10929. Springer, Cham. https://doi.org/10.1007/978-3-319-94144-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94144-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94143-1

  • Online ISBN: 978-3-319-94144-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics