iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-91476-3_44
A Linear Model for Three-Way Analysis of Facial Similarity | SpringerLink
Skip to main content

Abstract

Card sorting was used to gather information about facial similarity judgments. A group of raters put a set of facial photos into an unrestricted number of different piles according to each rater’s judgment of similarity. This paper proposes a linear model for 3-way analysis of similarity. An overall rating function is a weighted linear combination of ratings from individual raters. A pair of photos is considered to be similar, dissimilar, or divided, respectively, if the overall rating function is greater than or equal to a certain threshold, is less than or equal to another threshold, or is between the two thresholds. The proposed framework for 3-way analysis of similarity is complementary to studies of similarity based on features of photos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deibel, K., Anderson, R., Anderson, R.: Using edit distance to analyze card sorts. Expert Syst. 22(3), 129–138 (2005)

    Article  Google Scholar 

  2. Faiks, A., Hyland, N.: Gaining user insight: a case study illustrating the card sort technique. Coll. Res. Libr. 61(4), 349–357 (2000)

    Article  Google Scholar 

  3. Hepting, D.H., Bin Amer, H.H., Yao, Y.: Three-way analysis of facial similarity judgements. In: Proceedings of 2nd International Symposium on Fuzzy and Rough Sets (ISFUROS 2017), October 2017

    Google Scholar 

  4. Hepting, D.H., Maciag, T., Spring, R., Arbuthnott, K., Ślęzak, D.: A rough sets approach for personalized support of face recognition. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 201–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10646-0_24

    Chapter  Google Scholar 

  5. Hepting, D.H., Spring, R., Ślęzak, D.: A rough set exploration of facial similarity judgements. In: Peters, J.F., Skowron, A., Sakai, H., Chakraborty, M.K., Slezak, D., Hassanien, A.E., Zhu, W. (eds.) Transactions on Rough Sets XIV. LNCS, vol. 6600, pp. 81–99. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21563-6_5

    Chapter  Google Scholar 

  6. Hu, B.Q., Wong, H., Yiu, K.C.: On two novel types of three-way decisions in three-way decision spaces. Int. J. Approx. Reason. 82, 285–306 (2017). http://www.sciencedirect.com/science/article/pii/S0888613X1630319X

    Article  MathSciNet  Google Scholar 

  7. Li, H., Zhang, L., Zhou, X., Huang, B.: Cost-sensitive sequential three-way decision modeling using a deep neural network. Int. J. Approx. Reason. 85, 68–78 (2017). http://www.sciencedirect.com/science/article/pii/S0888613X17302086

    Article  MathSciNet  Google Scholar 

  8. Li, X., Sun, B., She, Y.: Generalized matroids based on three-way decision models. Int. J. Approx. Reason. 90, 192–207 (2017). http://www.sciencedirect.com/science/article/pii/S0888613X17304784

    Article  MathSciNet  Google Scholar 

  9. Liang, D., Xu, Z., Liu, D.: Three-way decisions based on decision-theoretic rough sets with dual hesitant fuzzy information. Inf. Sci. 396, 127–143 (2017). http://www.sciencedirect.com/science/article/pii/S002002551730539X

    Article  Google Scholar 

  10. Martine, G., Rugg, G.: That site looks 88.46% familiar: quantifying similarity of web page design. Expert Syst. 22(3), 115–120 (2005)

    Article  Google Scholar 

  11. Soranzo, A., Cooksey, D.: Testing taxonomies: beyond card sorting. Bull. Am. Soc. Inf. Sci. Technol. 41(5), 34–39 (2015)

    Article  Google Scholar 

  12. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  13. Yang, X., Li, T., Liu, D., Chen, H., Luo, C.: A unified framework of dynamic three-way probabilistic rough sets. Inf. Sci. 420, 126–147 (2017). http://www.sciencedirect.com/science/article/pii/S0020025517308939

    Article  MathSciNet  Google Scholar 

  14. Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32115-3_1

    Chapter  Google Scholar 

  15. Yao, Y.Y.: Three-way decisions and cognitive computing. Cogn. Comput. 8(4), 543–554 (2016). https://doi.org/10.1007/s12559-016-9397-5

    Article  Google Scholar 

  16. Yu, H., Jiao, P., Yao, Y., Wang, G.: Detecting and refining overlapping regions in complex networks with three-way decisions. Inf. Sci. 373, 21–41 (2016). http://www.sciencedirect.com/science/article/pii/S0020025516306703

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dominik Ślęzak for his encouragement and the anonymous reviewers for their constructive comments. This work has been supported, in part, by two NSERC Discovery Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daryl H. Hepting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hepting, D.H., Bin Amer, H.H., Yao, Y. (2018). A Linear Model for Three-Way Analysis of Facial Similarity. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics