Abstract
The broadcast encryption with dealership (BED) scheme allows a dealer, instead of a broadcaster, to manage a recipient. Unlike prior broadcast encryption schemes, BED reduces the burden placed on the broadcaster to manage recipient, which makes it suitable for a broadcasting service targeting a large number of recipients. Subscribing and unsubscribing from the broadcast service occur frequently at the request of the user, however, early versions of BED schemes do not support recipient revocation. In this paper, we propose a recipient revocable broadcast encryption with dealership and show that it is secure in the adaptive security model without random oracles.
This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2015-0-00320, A study of a public-key authentication framework for internet entities with hierarchical identities).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_16
Acharya, K., Dutta, R.: Secure and efficient construction of broadcast encryption with dealership. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 277–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47422-9_16
Acharya, K., Dutta, R.: Adaptively secure broadcast encryption with dealership. In: Hong, S., Park, J.H. (eds.) ICISC 2016. LNCS, vol. 10157, pp. 161–177. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53177-9_8
Acharya, K., Dutta, R.: Adaptively secure recipient revocable broadcast encryption with constant size ciphertext. https://eprint.iacr.org/2017/059.pdf
Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribution using private broadcast encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006). https://doi.org/10.1007/11889663_4
Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: Proceedings of ACM Computer and Communications Security 2006, pp. 211–220 (2006)
Camacho, P.: Fair exchange of short signatures without trusted third party. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_3
Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_12
Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40
Furukawa, J., Attrapadung, N.: Fully collusion resistant black-box traitor revocable broadcast encryption with short private keys. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 496–508. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_44
Gritti, C., Susilo, W., Plantard, T., Liang, K., Wong, D.S.: Broadcast encryption with dealership. Int. J. Inf. Secur. 15(3), 271–283 (2016)
Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3
Phuong, T.V.X., Yang, G., Susilo, W., Chen, X.: Attribute based broadcast encryption with short ciphertext and decryption key. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 252–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7_13
Ren, Y., Wang, S., Zhang, X.: Non-interactive dynamic identity-based broadcast encryption without random oracles. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 479–487. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34129-8_47
Susilo, W., Chen, R., Guo, F., Yang, G., Mu, Y., Chow, Y.: Recipient revocable identity-based broadcast encryption. In: ASIA CCS 2016, pp. 201–210 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Security Proof
A Security Proof
1.1 A.1 Proof of Theorem 1
Proof
Let a PPT adversary \(\mathcal {A}\) breaks the privacy of our RR-BED scheme. The security game between the challenger \(\mathcal {C}\) and the adversary \(\mathcal {A}\) is executed as follows:
-
Setup : The challenger \(\mathcal {C}\) randomly chooses \(\alpha ,\beta \in \mathbb {Z}_p\) and \(h\in \mathbb {G}\) and generates \(\textsf {PP} = \big (\mathbb {B}, h, h^{\alpha }, \cdots , h^{\alpha ^{N}}, g, g^{\alpha }, \cdots , g^{\alpha ^N}, g^{\alpha \beta }, \cdots , g^{\alpha ^{N+1}\beta }, \varOmega =e(g,g), \varOmega _1=e(g,h)\big )\) and \(\textsf {MK}=(\alpha ,\beta )\). It keeps MK secret and gives PP to \(\mathcal {A}\).
-
Challenge : \(\mathcal {A}\) selects two user groups \(G_0,G_1\) of the same size and submits to \(\mathcal {C}\). \(\mathcal {C}\) picks \(b\in \{0,1\}\) and runs RR-BED.GroupGen(\(G_{b}, v, k,\) PP) to obtain a group token.
$$\begin{aligned} P(G_b)&= (w_1,w_2,w_3,\hat{w}_1,\cdots ,\hat{w}_{k+1},w_M) \\&= (g^{\alpha \beta F(\alpha )r},\varOmega ^{-r}, g^{-\alpha r},g^{-\alpha ^{i}r},\cdots ,g^{-\alpha ^{k+1}r},\varOmega _1^r). \end{aligned}$$where \(v\ge |G_b|\), k is a maximum revocation number, and \(F(x)=\prod _{i\in G_b}^{|G_b|}(x+ID_i)\). \(\mathcal {C}\) gives \(P(G_b)\) to \(\mathcal {A}\).
-
Guess : \(\mathcal A\) outputs a guess \(b'\in \{0,1\}\). If \(b=b'\), \(\mathcal A\) wins.
\(\mathcal {A}\) must guess the group information from the group token. The group information is contained in \(F(\alpha )\) of \(w_1\) and \(w_2\). But \(F(\alpha )\) is hidden by a random integer r. If \(\mathcal {A}\) can predict r from \(g^{\alpha }\) and \(\hat{w}_1=g^{-\alpha r}\), then \(\mathcal {A}\) can generate \(P(G_0)\), and \(P(G_1)\), and compare them with \(P(G_b)\) because \(G_0,G_1\) are selected by \(\mathcal {A}\). But predicting r from \(g^{\alpha }\) and \(\hat{w}_1=g^{-\alpha r}\) is same as solving the DL problem. Therefore the group privacy is guaranteed if the DL assumption holds.\(\square \)
1.2 A.2 Proof of Theorem 2
Proof
Let a PPT adversary \(\mathcal {A}\) breaks the maximum number of accountability of our RR-BED scheme. The security game between a challenger \(\mathcal {C}\) and the adversary \(\mathcal {A}\) is executed as follows:
-
Setup : The challenger \(\mathcal {C}\) randomly chooses \(\alpha ,\beta \in \mathbb {Z}_p\) and \(h\in \mathbb {G}\). It generates \(\textsf {PP} = \big (\mathbb {B}, h, h^{\alpha }, \cdots , h^{\alpha ^{N}}, g, g^{\alpha }, \cdots , g^{\alpha ^N}, g^{\alpha \beta }, \cdots , g^{\alpha ^{N+1}\beta }, \varOmega =e(g,g),\varOmega _1=e(g,h)\big )\) and \(\textsf {MK}=(\alpha ,\beta )\). It keeps MK and gives PP to \(\mathcal {A}\).
-
Challenge : \(\mathcal {C}\) chooses a threshold value \(v\le N\) and sends the value to \(\mathcal {A}\).
-
Guess : \(\mathcal A\) chooses \(G^*\), where \(|G^*| = v' > v\), and generates a group token
$$\begin{aligned} P(G^*)&= (w_1,w_2,w_3,\hat{w}_1,\cdots ,\hat{w}_{k+1},w_M) \\&= (g^{\alpha \beta F(\alpha )r},\varOmega ^{-r}, g^{-\alpha r},g^{-\alpha ^{i}r},\cdots ,g^{-\alpha ^{k+1}r},\varOmega _1^r). \end{aligned}$$where k is a maximum revocation number and \(F(x)=\prod _{i\in G^*}^{|G^*|}(x+ID_i)\). \(\mathcal A\) sends \((P(G^*),G^*)\) to \(\mathcal C\). If RR-BED.Verify(\(P(G^*),v\), PP) = 1, then \(\mathcal A\) wins.
RR-BED.Verify(\(P(G^*),v,\textsf {PP}\)) = 1 indicates that \(\mathcal A\) can generate a valid group token. So \(\mathcal A\) can computes \(g^{\alpha ^{N+2}}, \cdots , g^{\alpha ^{N+v'-v+1}}\) and the \(v'(>v)\) degree polynomial \(F(x)=\prod _{i\in G^*}^{|G^*|}(x+ID_i)\). Hence, breaking the maximum number of accountability is the same as solving the \((N+i)-\) DHE(\(2\le i\le v-v'+1 \)) problem. \(\square \)
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Kim, J.S., Lee, Y., Eom, J., Lee, D.H. (2018). Recipient Revocable Broadcast Encryption with Dealership. In: Kim, H., Kim, DC. (eds) Information Security and Cryptology – ICISC 2017. ICISC 2017. Lecture Notes in Computer Science(), vol 10779. Springer, Cham. https://doi.org/10.1007/978-3-319-78556-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-78556-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78555-4
Online ISBN: 978-3-319-78556-1
eBook Packages: Computer ScienceComputer Science (R0)