iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-77935-5_24
Sound Black-Box Checking in the LearnLib | SpringerLink
Skip to main content

Sound Black-Box Checking in the LearnLib

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10811))

Included in the following conference series:

Abstract

In Black-Box Checking (BBC) incremental hypotheses of a system are learned in the form of finite automata. On these automata LTL formulae are verified, or their counterexamples validated on the actual system. We extend the LearnLib’s system-under-learning API for sound BBC, by means of state equivalence, that contrasts the original proposal where an upper-bound on the number of states in the system is assumed. We will show how LearnLib’s new BBC algorithms can be used in practice, as well as how one could experiment with different model checkers and BBC algorithms. Using the RERS 2017 challenge we provide experimental results on the performance of all LearnLib’s active learning algorithms when applied in a BBC setting. The performance of learning algorithms was unknown for this setting. We will show that the novel incremental algorithms TTT, and ADT perform the best.

J. Meijer—Supported by STW SUMBAT grant: 13859.

J. van de Pol—Supported by the 3TU.BSR project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Extensions and equivalences may be defined as in [2] (such as implication: \(\mathop {\implies }\), globally \(\mathop {G}\), and future: \(\mathop {F}\)).

  2. 2.

    https://github.com/Meijuh/NFM2018BBC.

  3. 3.

    http://rers-challenge.org.

  4. 4.

    https://projectlombok.org.

  5. 5.

    Maler and Pnueli is not shown, because it was not able to disprove a single property.

References

  1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  3. Belinfante, A.: JTorX: exploring model-based testing. Ph.D. thesis, University of Twente, Enschede, Netherlands (2014)

    Google Scholar 

  4. Bloemen, V., van de Pol, J.: Multi-core SCC-based LTL model checking. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 18–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49052-6_2

    Chapter  Google Scholar 

  5. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_32

    Chapter  Google Scholar 

  6. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

    Chapter  Google Scholar 

  7. Frohme, M.: Active automata learning with adaptive distinguishing sequences. Master’s thesis, Technische Universität Dortmund (2015)

    Google Scholar 

  8. Fujiwara, S., von Bochmann, G., Khendek, F., et al.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)

    Article  Google Scholar 

  9. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual. Addison-Wesley, Boston (2004)

    Google Scholar 

  10. Howar, F.: Active learning of interface programs. Ph.D. thesis, Dortmund University of Technology (2012)

    Google Scholar 

  11. Isberner, M.: Foundations of active automata learning: an algorithmic perspective. Ph.D. thesis, Technical University Dortmund, Germany (2015)

    Google Scholar 

  12. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib - a framework for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    Chapter  Google Scholar 

  13. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Google Scholar 

  14. Jasper, M., Fecke, M., Steffen, B., et al.: The RERS 2017 challenge and workshop (invited paper). In: SPIN, Santa Barbara, CA, USA, 10–14 July 2017, pp. 11–20 (2017)

    Google Scholar 

  15. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_61

    Google Scholar 

  16. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  17. Khosrowjerdi, H., Meinke, K., Rasmusson, A.: Learning-based testing for safety critical automotive applications. In: Bozzano, M., Papadopoulos, Y. (eds.) IMBSA 2017. LNCS, vol. 10437, pp. 197–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64119-5_13

    Chapter  Google Scholar 

  18. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118(2), 316–326 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a platooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol. 10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66583-2_9

    Chapter  Google Scholar 

  20. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5_11

    Chapter  Google Scholar 

  21. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive systems. In: ICST, Luxembourg, 18–22 March 2013, pp. 447–454 (2013)

    Google Scholar 

  22. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learning with on-the-fly direct hypothesis construction. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) ISoLA 2011. CCIS, pp. 248–260. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34781-8_19

    Chapter  Google Scholar 

  23. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang. Comb. 7(2), 225–246 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Raffelt, H., Steffen, B., Margaria, T.: Dynamic Testing Via Automata Learning. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 136–152. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77966-7_13

    Chapter  Google Scholar 

  25. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sindhu, M.A.: Algorithms and tools for learning-based testing of reactive systems. Ph.D. thesis (2013)

    Google Scholar 

  27. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_8

    Chapter  Google Scholar 

  28. Steffen, B., Isberner, M., Naujokat, S., et al.: Property-driven benchmark generation: synthesizing programs of realistic structure. STTT 16(5), 465–479 (2014)

    Article  Google Scholar 

  29. Steffen, B., Jasper, M., et al.: Property-preserving generation of tailored benchmark Petri nets. In: ACSD, Zaragoza, Spain, 25–30 June 2017, pp. 1–8 (2017)

    Google Scholar 

  30. Timmer, M., Brinksma, E., Stoelinga, M.: Model-based testing. In: Software and Systems Safety - Specification and Verification, pp. 1–32 (2011)

    Google Scholar 

Download references

Acknowledgements

We want to thank the developers of the AutomataLib, and the LearnLib; without the extraordinary design of those tools, this work would not have been possible. Furthermore, we would like to thank Frits Vaandrager for his useful feedback on a draft version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Meijer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meijer, J., van de Pol, J. (2018). Sound Black-Box Checking in the LearnLib. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds) NASA Formal Methods. NFM 2018. Lecture Notes in Computer Science(), vol 10811. Springer, Cham. https://doi.org/10.1007/978-3-319-77935-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77935-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77934-8

  • Online ISBN: 978-3-319-77935-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics