Abstract
A scale-invariant leveled fully homomorphic encryption (FHE) scheme over the integers is proposed by Coron et al. in PKC 2014, where the ciphertext noise increases linearly after each homomorphic multiplication. Then based on Coron’s variant of the approximate greatest common divisor problem, we construct a more efficient leveled FHE scheme over the integers without the modulus switching technique, which could resist chosen plaintext attacks. The inner product operation in our homomorphic multiplication is eliminated by multiplying the multiplication key directly. The homomorphic multiplication in our scheme is realized by the more simplified multiplication key, in which the number of integers is decreased from \(O(\varTheta \cdot \eta )\) to O(1) compared with Coron’s scheme. Simulation results and analysis show that our scheme’s performance of multiplication key and homomorphic multiplication is much more efficient than that of Coron’s scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_18
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2
Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_28
Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_27
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, vol. 6(3), pp. 309–325 (2012)
Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_18
Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20
Cheon, J.H., Kim, J., Lee, M.S., Yun, A.: CRT-based fully homomorphic encryption over the integers. Inf. Sci. 310, 149–162 (2015)
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 513–536. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_20
Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (61702342), the Science and Technology Innovation Projects of Shenzhen (JCYJ20160307150216309, JCYJ20170302151321095, GJHZ20160226202520268) and Tencent Rhinoceros Birds-Scientific Research Foundation for Young Teachers of Shenzhen University. We would like to thank Jung Hee Cheon for his valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sun, X., Zhang, P., Yu, J., Xie, W. (2017). An Improved Leveled Fully Homomorphic Encryption Scheme over the Integers. In: Liu, J., Samarati, P. (eds) Information Security Practice and Experience. ISPEC 2017. Lecture Notes in Computer Science(), vol 10701. Springer, Cham. https://doi.org/10.1007/978-3-319-72359-4_52
Download citation
DOI: https://doi.org/10.1007/978-3-319-72359-4_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72358-7
Online ISBN: 978-3-319-72359-4
eBook Packages: Computer ScienceComputer Science (R0)