iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-71150-8_7
A New Approximation Algorithm for the Maximum Stacking Base Pairs Problem from RNA Secondary Structures Prediction | SpringerLink
Skip to main content

A New Approximation Algorithm for the Maximum Stacking Base Pairs Problem from RNA Secondary Structures Prediction

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10627))

Abstract

This paper investigates the problem of maximum stacking base pairs from RNA secondary structure prediction. The basic version of maximum stacking base pairs problem as: given an RNA sequence, to find a maximum number of base pairs where each base pair is involved in a stacking. Ieong et al. showed this problem to be NP-hard, where the candidate base pairs follow some biology principle and are given implicitly. In this paper, we study the version of this problem that the candidate base pairs are given explicitly as input, and present a new approximation algorithm for this problem by the local search method, improving the approximation factor from 5/2 to 7/3. The time complexity is within \(O(n^{14})\), since we adopt 1-substitution and special 2-substitutions in the local improvement steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tinoco Jr., I., Bustamante, C.: How RNA folds. J. Mol. Biol. 293, 271–281 (1999)

    Article  Google Scholar 

  2. Nussinov, R., Pieczenik, G., Griggs, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM J. Appl. Math. 35(1), 68–82 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6309–6313 (1980)

    Article  Google Scholar 

  4. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

  5. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46, 591–621 (1984)

    Article  MATH  Google Scholar 

  6. Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45, 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of interval loops in RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)

    Article  Google Scholar 

  8. Lyngsø, R.B., Pedersen, C.N.S.: RNA pseudoknot prediction in energy based models. J. Comput. Biol. 7(3/4), 409–428 (2000)

    Article  Google Scholar 

  9. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104(1–3), 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  11. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree adjoining grammars for RNA structure prediction. Theoret. Comput. Sci. 210(2), 277–303 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Tinoco Jr., I., Borer, P.N., Dengler, B., Levine, M.D., Uhlenbeck, O.C., Crothers, D.M., Gralla, J.: Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 246, 40–42 (1973)

    Article  Google Scholar 

  13. Ieong, S., Kao, M.-Y., Lam, T.-W., Sung, W.-K., Yiu, S.-M.: Predicting RNA secondary structure with arbitrary pseudoknots by maximizing the number of stacking pairs. J. Comput. Biol. 10, 981–995 (2003)

    Article  Google Scholar 

  14. Lyngsø, R.B.: Complexity of pseudoknot prediction in simple models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_77

    Chapter  Google Scholar 

  15. Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(2), 323–332 (2010)

    Article  Google Scholar 

  16. Berman, P.: A \(d\)/2 approximation for maximum weight independent set in \(d\)-Claw Free Graphs. Nordic J. Comput. 7, 178–184 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Zhou, A., Jiang, H., Guo, J., Feng, H., Liu, N., Zhu, B.: Improved Approximation algorithm for the maximum base pair stackings problem in RNA secondary structures prediction. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 575–587. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_48

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, A., Jiang, H., Guo, J., Zhu, D. (2017). A New Approximation Algorithm for the Maximum Stacking Base Pairs Problem from RNA Secondary Structures Prediction. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10627. Springer, Cham. https://doi.org/10.1007/978-3-319-71150-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71150-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71149-2

  • Online ISBN: 978-3-319-71150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics