iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-69811-3_77
A Disaster Information Gathering System Design Using Fuzzy Logic | SpringerLink
Skip to main content

A Disaster Information Gathering System Design Using Fuzzy Logic

  • Conference paper
  • First Online:
Advances on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2017)

Abstract

Fuzzy-based system can improve the overall system performance for real-time data analysis. In our previous work, we proposed a fuzzy-based wireless sensor and actuator network testbed in order to select actuators (Roomba) in indoor environment. In this paper, we propose a disaster information gathering system using fuzzy logic. We evaluate the performance of the system by simulation considering fire strength, flammable gas concentration and temperature parameters. The simulation results show the performance is good in indoor scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: Proceedings of the International Conference on Future Internet of Things and Cloud (FiCloud 2014), pp. 464–470, August 2014

    Google Scholar 

  2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: research challenges. Ad Hoc Netw. J. 2(4), 351–367 (2004). (Elsevier)

    Article  Google Scholar 

  3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  4. Aosong Electronics Co., Ltd.: Temperature and humidity module: Dht11 product manual. http://www.aosong.com/

  5. Akan, Ö.B., Akyildiz, I.F.: Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Trans. Netw. 13(5), 1003–1016 (2005)

    Article  Google Scholar 

  6. Ebisu, K., Inaba, T., Elmazi, D., Ikeda, M., Barolli, L., Kulla, E.: A fuzzy-based testbed design for wireless sensor and actuator networks. In: Proceedings of the 5th International Workshop on Information Networking and Wireless Communications (INWC 2015), pp. 548–553, September 2015

    Google Scholar 

  7. Ebisu, K., Inaba, T., Elmazi, D., Ikeda, M., Barolli, L., Kulla, E.: A fuzzy-based wireless sensor and actuator network: simulation and experimental results. In: Proceedings of the 11th International Conference on Broad-Band Wireless Computing, Communication and Applications (BWCCA 2016), pp. 693–701, November 2016

    Google Scholar 

  8. Ebisu, K., Inaba, T., Elmazi, D., Ikeda, M., Kulla, E., Barolli, L.: Performance evaluation of a fuzzy-based wireless sensor and actuator network testbed considering depth and RGB sensors. In: Proceedings of the 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS 2016), pp. 69–75, July 2016

    Google Scholar 

  9. Forlizzi, J., DiSalvo, C.: Service robots in the domestic environment: a study of the Roomba vacuum in the home. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction (ACM HRI 2006), Utah, US, pp. 258–265, March 2006

    Google Scholar 

  10. Gupta, I., Riordan, D., Sampalli, S.: Cluster-head election using fuzzy logic for wireless sensor networks. In: Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSR 2005), pp. 255–260 (2005)

    Google Scholar 

  11. HANWEI Eletronics Co., Ltd.: Technical data: Mq-2 gas sensor. http://wiki.seeedstudio.com/images/3/3f/MQ-2.pdf

  12. Ikeda, M., Ebisu, K., Sakai, Y., Elmazi, D., Barolli, L.: Performance evaluation of a fuzzy-based wireless sensor and actuator network testbed for object tracking. In: Proceedings of the 6th International Workshop on Methods, Analysis and Protocols for Wireless Communication (MAPWC 2015), pp. 442–447, November 2015

    Google Scholar 

  13. Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space-Based Situat. Comput. 6(4), 228–238 (2016)

    Article  Google Scholar 

  14. Inaba, T., Sakamoto, S., Oda, T., Barolli, L., Takizawa, M.: A new FACS for cellular wireless networks considering QoS: a comparison study of FuzzyC with MATLAB. In: Proceedings of the 18th International Conference on Network-Based Information Systems (NBiS 2015), pp. 338–344, September 2015

    Google Scholar 

  15. Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation of a high-fidelity ac metering network. In: Proceedings of the International Conference on Information Processing in Sensor Networks 2009 (IPSN 2009), San Francisco, US, pp. 253–264, April 2009

    Google Scholar 

  16. Li, T.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

    Article  Google Scholar 

  17. Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  18. Schmitt, S., Will, H., Aschenbrenner, B., Hillebrandt, T., Kyas, M.: A reference system for indoor localization testbeds. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN 2012), Sydney, Australia, pp. 1–8, November 2012

    Google Scholar 

  19. Sengupta, S., Das, S., Nasir, M., Vasilakos, A.V., Pedrycz, W.: An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 1093–1102 (2012)

    Article  Google Scholar 

  20. Su, X., Wu, L., Shi, P.: Sensor networks with random link failures: distributed filtering for TS fuzzy systems. IEEE Trans. Ind. Inform. 9(3), 1739–1750 (2013)

    Article  Google Scholar 

  21. Sung, J.Y., Guo, L., Grinter, R.E., Christensen, H.I.: My Roomba is Rambo: intimate home appliances. In: Proceedings of the 9th International Conference on Ubiquitous Computing (UbiComp 2007), Seoul, South Korea, pp. 145–162, September 2007

    Google Scholar 

  22. TABrain Co., Ltd.: Tab shield v1.1. http://tabrain.jp/

  23. Tribelhorn, B., Dodds, Z.: Evaluating the Roomba: a low-cost, ubiquitous platform for robotics research and education. In: Proceedings of the IEEE International Conference on Robotics and Automation (IEEE ICRA 2007), Roma, Italy, pp. 1393–1399, April 2007

    Google Scholar 

  24. Tsuchiya, G., Ebisu, K., Ikeda, M., Elmazi, D., Barolli, L., Kulla, E.: A fuzzy-based testbed for wireless sensor and actuator networks: performance evaluation for different remaining energy of actuators. In: Proceedings of the 11th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2017), pp. 87–97 (2017)

    Google Scholar 

  25. Xia, J., Yun, R., Yu, K., Yin, F., Wang, H., Bu, Z.: A coordinated mechanism for multimode user equipment accessing wireless sensor network. Int. J. Grid Util. Comput. 5(1), 1–10 (2014)

    Article  Google Scholar 

  26. Yu, Y., Rittle, L.J., Bhandari, V., LeBrun, J.B.: Supporting concurrent applications in wireless sensor networks. In: Proceedings of the 4th ACM International Conference on Embedded Networked Sensor Systems (ACM SenSys 2006), Boulder, US, pp. 139–152, November 2006

    Google Scholar 

  27. Yuriyama, M., Kushida, T.: Integrated cloud computing environment with IT resources and sensor devices. Int. J. Space-Based Situat. Comput. 1(2/3), 163–173 (2011)

    Article  Google Scholar 

  28. Zadeh, L.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 37, 77–84 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsuchiya, G., Ikeda, M., Elmazi, D., Barolli, L., Kulla, E. (2018). A Disaster Information Gathering System Design Using Fuzzy Logic. In: Barolli, L., Xhafa, F., Conesa, J. (eds) Advances on Broad-Band Wireless Computing, Communication and Applications. BWCCA 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-69811-3_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69811-3_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69810-6

  • Online ISBN: 978-3-319-69811-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics