iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-69548-8_9
Investigating the Relationship Between Tweeting Style and Popularity: The Case of US Presidential Election 2016 | SpringerLink
Skip to main content

Investigating the Relationship Between Tweeting Style and Popularity: The Case of US Presidential Election 2016

  • Conference paper
  • First Online:
Knowledge Engineering and Semantic Web (KESW 2017)

Abstract

Predicting popularity from social media has been explored about a decade. As far as the number of social media users is soaring, understanding the relationship between popularity and social media is really beneficial because it can be mapped to the real popularity of an entity. The popularity in social media, for instance in Twitter, is interpreted by drawing a relationship between a social media account and its followers. Therefore, in this paper, to understand the popularity of candidates of the US election 2016 in social media, we verify this association in Twitter by analyzing the candidates’ tweets. More specifically, our aim is to assess if candidates put efforts to improve their style of tweeting over time to be more favorable to their followers. We show that Mr. Trump could wisely exploit Twitter to attract more people by tweeting in a well-organized and desirable manner and that tweeting style has increased his popularity in social media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See, for example: https://blog.twitter.com/official/en_us/a/2016/how-election2016-was-tweeted-so-far.html.

  2. 2.

    See, for example: http://www.cbsnews.com/news/president-elect-trump-says-social-media-played-a-key-role-in-his-victory/.

  3. 3.

    http://www.foxnews.com/tech/2017/05/21/twitter-co-founder-apologizes-for-helping-elect-trump.html.

  4. 4.

    https://cran.r-project.org/src/contrib/Archive/sentiment/.

  5. 5.

    See, for example: http://www.snopes.com/donald-trump-sentence/.

  6. 6.

    http://www.smh.com.au/world/us-election/donald-trump-recorded-having-extremely-lewd-conversation-about-women-20161007-grxrwp.html.

  7. 7.

    https://vault.fbi.gov/hillary-r.-clinton.

References

  1. Asur, S., Huberman, B.A.: Predicting the future with social media. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2010, vol. 01, pp. 492–499. IEEE Computer Society, Washington, DC (2010). doi:10.1109/WI-IAT.2010.63

  2. Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, COLING 2010, pp. 36–44. Association for Computational Linguistics, Stroudsburg, PA, USA (2010). http://dl.acm.org/citation.cfm?id=1944566.1944571

  3. Bradshaw, S., Howard, P.N.: Troops, trolls and troublemakers: a global inventory of organized social media manipulation (2017). http://comprop.oii.ox.ac.uk/wp-content/uploads/sites/89/2017/07/Troops-Trolls-and-Troublemakers.pdf. Working paper

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). doi:10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Emanet, N., Öz, H.R., Bayram, N., Delen, D.: A comparative analysis of machine learning methods for classification type decision problems in healthcare. Decis. Analytics 1(1), 6 (2014). doi:10.1186/2193-8636-1-6

    Article  Google Scholar 

  6. Eysenbach, G.: Can tweets predict citations? metrics of social impact based on twitter and correlation with traditional metrics of scientific impact. J. Med. Internet. Res. 13, e123 (2011)

    Article  Google Scholar 

  7. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014). http://dl.acm.org/citation.cfm?id=2627435.2697065

    MathSciNet  MATH  Google Scholar 

  8. Gayo-Avello, D.: Don’t turn social media into another ‘literary digest’ poll. Commun. ACM 54(10), 121–128 (2011). doi:10.1145/2001269.2001297

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2003). http://www.worldcat.org/isbn/0387952845

    MATH  Google Scholar 

  10. Henrique, J.: Getoldtweets by python. https://github.com/Jefferson-Henrique/GetOldTweets-python

  11. Jahanbakhsh, K., Moon, Y.: The predictive power of social media: On the predictability of U.S. presidential elections using twitter. CoRR abs/1407.0622 (2014). http://arxiv.org/abs/1407.0622

  12. Jarvis, S.E.: Communicator-in-chief: How barack obama used new media technology to win the white house edited by John Allen Hendricks and Robert Denton Jr. Presidential Stud. Q. 40(4), 800–802 (2010). doi:10.1111/j.1741-5705.2010.03815.x

    Article  Google Scholar 

  13. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, HLT 2011, vol. 1, pp. 151–160. Association for Computational Linguistics, Stroudsburg, PA, USA (2011). http://dl.acm.org/citation.cfm?id=2002472.2002492

  14. Kupavskii, A., Ostroumova, L., Umnov, A., Usachev, S., Serdyukov, P., Gusev, G., Kustarev, A.: Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, NY, USA, pp. 2335–2338 (2012). doi:10.1145/2396761.2398634

  15. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002). http://CRAN.R-project.org/doc/Rnews/

  16. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012)

    Article  MathSciNet  Google Scholar 

  17. Näppi, J.J., Regge, D., Yoshida, H.: Comparative performance of random forest and support vector machine classifiers for detection of colorectal lesions in CT colonography. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) ABD-MICCAI 2011. LNCS, vol. 7029, pp. 27–34. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28557-8_4

    Chapter  Google Scholar 

  18. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010, Washington, DC, USA, 23–26 May 2010 (2010)

    Google Scholar 

  19. Oliver, J.E., Rahn, W.M.: Rise of the trumpenvolk. Ann. Am. Acad. Polit. Soc. Sci. 667(1), 189–206 (2016). doi:10.1177/0002716216662639

    Article  Google Scholar 

  20. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Chair, N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta, Malta, May 2010

    Google Scholar 

  21. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). doi:10.1561/1500000011

    Article  Google Scholar 

  22. Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! predicting message propagation in twitter. In: Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, 17–21 July 2011 (2011)

    Google Scholar 

  23. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: Proceedings of the 2010 IEEE Second International Conference on Social Computing, SOCIALCOM 2010, pp. 177–184 (2010). doi:10.1109/SocialCom.2010.33

  24. Tumasjan, A., Sprenger, T., Sandner, P., Welpe, I.: Predicting elections with twitter: What 140 characters reveal about political sentiment. In: Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, pp. 178–185 (2010)

    Google Scholar 

  25. Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 U.S. presidential election cycle. In: Proceedings of the ACL 2012 System Demonstrations, ACL 2012, pp. 115–120. Association for Computational Linguistics, Stroudsburg, PA, USA (2012). http://dl.acm.org/citation.cfm?id=2390470.2390490

  26. Zaman, T., Fox, E.B., Bradlow, E.T.: A bayesian approach for predicting the popularity of tweets. CoRR abs/1304.6777 (2013). http://arxiv.org/abs/1304.6777

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farideh Tavazoee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tavazoee, F., Conversano, C., Mola, F. (2017). Investigating the Relationship Between Tweeting Style and Popularity: The Case of US Presidential Election 2016. In: Różewski, P., Lange, C. (eds) Knowledge Engineering and Semantic Web. KESW 2017. Communications in Computer and Information Science, vol 786. Springer, Cham. https://doi.org/10.1007/978-3-319-69548-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69548-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69547-1

  • Online ISBN: 978-3-319-69548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics