iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-68270-9_13
FlyFast: A Scalable Approach to Probabilistic Model-Checking Based on Mean-Field Approximation | SpringerLink
Skip to main content

FlyFast: A Scalable Approach to Probabilistic Model-Checking Based on Mean-Field Approximation

  • Chapter
  • First Online:
ModelEd, TestEd, TrustEd

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10500))

  • 654 Accesses

Abstract

Model-checking is an effective formal verification technique that has also been extended to quantitative logics and models such as PCTL and DTMCs as well as CSL and CTMCs/CTMDPs. Unfortunately, the state-space explosion problem of classical model-checking algorithms affects also quantitative extensions. Mean-field techniques provide approximations of the mean behaviour of large population models. These approximations are deterministic: a unique value of the fractions of agents in each state is computed for each time instant. A drastic reduction of the size of the model is obtained enabling the definition of an efficient model-checking algorithm. This paper is a survey of work we have done in the last few years in the area of mean-field approximated probabilistic model-checking. We start with a brief description of FlyFast, an on-the-fly model checker we have developed for approximated bounded PCTL model-checking, based on mean-field population DTMC approximation. Then we show an example of use of FlyFast in the context of Collective Adaptive Systems. We also discuss two additional interesting front-ends for FlyFast; the first one is a translation from CTMC-based population models and (a fragment of) CSL that allows for approximate probabilistic model-checking in the continuous stochastic time setting; the second one is a translation from a predicate-based process interaction language that allows for probabilistic model-checking of models based on components equipped both with behaviour and with attributes, on which predicates are defined that can be used in component interaction primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See, e.g. www.focas.eu/adaptive-collective-systems.

  2. 2.

    The technique can be applied also to a finite selection of individuals; in addition, systems with several distinct types of individuals can be dealt with. For the sake of simplicity, in the present paper we consider systems with many instances of a single individual only and we focus in the model-checking a single individual in such a context.

  3. 3.

    Tenth Workshop on Quantitative Aspects of Programming Languages, March 31 - April 1, 2012, Tallinn, Estonia.

  4. 4.

    http://www.quanticol.eu.

  5. 5.

    FlyFast (https://quanticol.github.io/jSAM/flyfast.html) is provided within the jSAM (java StochAstic Model Checker) framework which is an open source Eclipse plugin (https://quanticol.github.io/jSAM/).

  6. 6.

    In FlyFast, the notation \(\texttt {C[n]}\) is used for indicating n copies of state \({\texttt {C}}\).

  7. 7.

    It is worth stressing here that in the model of process interaction presented in [46], which FlyFast is based on, processes do not synchronize on actions explicitly (i.e. there is no notion of randez-vous here). Process interaction is only indirect, by means of the impact of the o.m.v. on individual transition probabilities.

  8. 8.

    We used a 1.86 GHz Intel Core 2 Duo with 4 GB. State space generation time of PRISM is not counted. The experiments are available in the FlyFast web site, showing that the latter has comparable performance. Worst-case complexity of both algorithms are also comparable.

  9. 9.

    We refer to [38, 42] for the characterisation of safe formulas and a related discussion.

  10. 10.

    We refer to [7, 8] for the definition of formula robustness.

  11. 11.

    See Theorem 5 of [7].

  12. 12.

    Stiff models are those whose rates differ several orders of magnitude.

  13. 13.

    More specifically, we use only the discretisation phase of uniformisation, and not the transient analysis part, that would require a further composition with a Poisson process.

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking continuous time Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. IEEE CS 29(6), 524–541 (2003)

    Article  MATH  Google Scholar 

  3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Bernardo, M., De Nicola, R., Hillston, J. (eds.): Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems. LNCS, vol. 9700. Springer, Heidelberg (2016). ISBN 978-3-319-34095-1 (print), 978-3-319-34096-8 (online), ISSN 0302-9743(2016)

    Google Scholar 

  5. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for CTL*. In: LICS, pp. 388–397. IEEE Computer Society (1995)

    Google Scholar 

  6. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D., Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian agents. In: Bertrand, N., Tribastone, M. (eds.) Proceedings Thirteenth Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2015, London, UK, 11th–12th April 2015, EPTCS, vol. 194, pp. 16–31 (2015). http://dx.doi.org/10.4204/EPTCS.194.2

  7. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1_24

    Chapter  Google Scholar 

  8. Bortolussi, L., Hillston, J.: Model checking single agent behaviours by fluid approximation. Inf. Comput. 242, 183–226 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013). http://www.sciencedirect.com/science/article/pii/S0166531613000023

  10. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm attacks using continuous state-space approximation of process algebra models. J. Comput. Syst. Sci. 74(6), 1013–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buchholz, P., Hahn, E.M., Hermanns, H., Zhang, L.: Model checking algorithms for CTMDPs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 225–242. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_19

    Chapter  Google Scholar 

  12. Chaintreau, A., Le Boudec, J.Y., Ristanovic, N.: The age of gossip: spatial mean field regime. In: Douceur, J.R., Greenberg, A.G., Bonald, T., Nieh, J. (eds.) SIGMETRICS/Performance, pp. 109–120. ACM (2009)

    Google Scholar 

  13. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying properties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 222–235. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7_18. ISBN 978-3-662-44601-0 (print), 978-3-662-44602-7 (online), ISSN 0302-9743

    Google Scholar 

  14. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for closure spaces. Log. Methods Comput. Sci. 12(4), 1–51 (2016). doi:10.2168/LMCS-12(4:2)2016. Published online: 11 October 2016. ISSN 1860-5974

  15. Ciancia, V., Latella, D., Massink, M.: On-the-fly mean-field model-checking for attribute-based coordination. In: Lluch Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp. 67–83. Springer, Cham (2016). doi:10.1007/978-3-319-39519-7_5. ISSN 0302-9743, ISBN 978-3-319-39518-0 (print), 978-3-319-39519-7 (online)

    Google Scholar 

  16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–263 (1986)

    Article  MATH  Google Scholar 

  17. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for the verification of temporal properties. Form. Methods Syst. Des. 1(2–3), 275–288 (1992)

    Article  MATH  Google Scholar 

  18. Darling, R., Norris, J.: Differential equation approximations for Markov chains. Probab. Surv. 5, 37–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic Lotka-Volterra models. In: IMCSIT, pp. 289–296 (2010)

    Google Scholar 

  20. De Nicola, R., et al.: The SCEL language: design, implementation, verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Cham (2015). doi:10.1007/978-3-319-16310-9_1. ISBN 978-3-319-16309-3 (print), 978-3-319-16310-9 (online), ISSN 0302-9743

    Google Scholar 

  21. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Bounded probabilistic model checking with the Mur\(\alpha \) verifier. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 214–229. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30494-4_16

    Chapter  Google Scholar 

  22. Din, Q.: Dynamics of a discrete Lotka-Volterra model. Adv. Diff. Equ. 95, 1–13 (2013)

    MathSciNet  Google Scholar 

  23. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  24. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15297-9_9

    Chapter  Google Scholar 

  25. Gast, N., Gaujal, B.: A mean field model of work stealing in large-scale systems. In: Misra, V., Barford, P., Squillante, M.S. (eds.) SIGMETRICS, pp. 13–24. ACM (2010)

    Google Scholar 

  26. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification of service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) Rigorous Software Engineering for Service-Oriented Systems. LNCS, vol. 6582, pp. 390–407. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20401-2_18

    Chapter  Google Scholar 

  27. Goel, N.S., Maitra, S.C., Montroll, E.W.: On the volterra and other nonlinear models of interacting populations. Rev. Mod. Phys. 43, 231–276 (1971). http://link.aps.org/doi/10.1103/RevModPhys.43.231

  28. Guirado, G., Hérault, T., Lassaigne, R., Peyronnet, S.: Distribution, approximation and probabilistic model checking. In: PDMC 2005. LNCS, vol. 135. pp. 19–30. Springer, Heidelberg (2006)

    Google Scholar 

  29. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state Markov model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 641–647. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_49

    Chapter  Google Scholar 

  30. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Comput. 6, 512–535 (1994)

    Article  MATH  Google Scholar 

  31. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic Model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0_8

    Chapter  Google Scholar 

  32. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual. Addison-Wesley, Boston (2004)

    Google Scholar 

  33. Kolesnichenko, A., de Boer, P.T., Remke, A., Haverkort, B.R.: A logic for model-checking mean-field models. In: DSN13 (2013)

    Google Scholar 

  34. Kolesnichenko, A.V., Remke, A.K.I., de Boer, P.T., Haverkort, B.: A logic for model-checking of mean-field models. Technical report TR-CTIT-12-11 (2012). http://doc.utwente.nl/80267/

  35. Kurtz, T.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking using PRISM: a hybrid approach. STTT 6(2), 128–142 (2004)

    Article  MATH  Google Scholar 

  37. Larsen, K.G., Legay, A.: Statistical model checking: past, present, and future. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 3–15. Springer, Cham (2016). doi:10.1007/978-3-319-47166-2_1

    Chapter  Google Scholar 

  38. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In: Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314. Springer, Cham (2014). doi:10.1007/978-3-319-05119-2_17

    Chapter  Google Scholar 

  39. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field model-checking for self-organising coordination - preliminary version. Technical report TR-QC-01-2013, QUANTICOL (2013)

    Google Scholar 

  40. Latella, D., Loreti, M., Massink, M.: On-the-fly probabilistic model checking. In: Lanese, I., Sokolova, A. (eds.) Proceedings of the 7th Interaction and Concurrency Experience (ICE 2014), 6 June 2014, Berlin, Germany. EPTCS, vol. 166, pp. 45–59 (2014). doi:10.4204/EPTCS.166.6, http://cgi.cse.unsw.edu.au/~rvg/eptcs/, ISSN 2075-2180

  41. Latella, D., Loreti, M., Massink, M.: On-the-fly fluid model checking via discrete time population models. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 193–207. Springer, Cham (2015). doi:10.1007/978-3-319-23267-6_13. ISSN 0302-9743

    Chapter  Google Scholar 

  42. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approximated model-checking for self-organising coordination. Sci. Comput. Program. 110, 23–50 (2015). doi:10.1016/j.scico.2015.06.009, ISSN 0167-6423

  43. Latella, D., Loreti, M., Massink, M.: FlyFast: a mean field model checker. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 303–309. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54580-5_18. ISSN 0302-9743

    Chapter  Google Scholar 

  44. Latella, D., Massink, M.: Design and optimisation of the FlyFast front-end for attribute-based coordination. In: de Vink, E.P., Wiklicky, H. (eds.) Proceedings of the Fifteenth Workshop on Quantitative Aspects of Programming Languages (QAPL 2017). Electronic Proceedings in Theoretical Computer Science, EPTCS (2017, to appear). Available also as QUANTICOL Technical report TR-QC-01-2017 (2017)

    Google Scholar 

  45. Latella, D.: Comunicazione basata su proprietà nei sistemi decentralizzati [property-based inter-process communication in decentralized systems], December 1983. Graduation thesis. Istituto di Scienze dell’Informazione. Univ. of Pisa (in italian)

    Google Scholar 

  46. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: QEST07, pp. 3–18. IEEE Computer Society Press (2007). ISBN 978-0-7695-2883-0

    Google Scholar 

  47. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  48. Lotka, A.J.: Elements of Mathematical Biology. Williams and Wilkins Company, Philadelphia (1924)

    Google Scholar 

  49. de Oca, M.A.M., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M., Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mechanism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327 (2011)

    Google Scholar 

  50. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). doi:10.1007/978-3-319-23820-3_2

    Chapter  Google Scholar 

  51. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

In the late 80’s of the previous century, Diego met Ed, who was chairing a Work Package of the EU Lotosphere project, in which Diego participated as well. At that time, Diego was fascinated by the early work on probabilistic process algebras by Scott Smolka, Kim Larsen and others and he was applying similar ideas to LOTOS, together with Paola Quaglia. At the same time, he was loving the work of Rom, supervised by Ed, on Bundle Event Structures as a mathematical model underlying a truly concurrent semantics for LOTOS. The obvious step was to start thinking of probabilistic extensions of Bundle Event Structures. Accidentally, Diego and Mieke had met at a Lotosphere workshop in The Hague and they found themselves nicely synchronised in their professional interests, and beyond ...

Not surprisingly, Diego moved to Twente where he spent 12 months, from july 1992 to june 1993, and together with Ed, Rom and Joost-Pieter, started investigating probabilistic, deterministically timed and stochastically timed Bundle Event Structures. This was the start of a lively friendship of the four of them as well as of a series of headaches when trying to find finite graph-like representations of such structures suitable for analysis. They have been struggling together for years, searching for cut-off events in those slippery structures. Eventually, Mieke moved to Italy and joined the group of cut-off events hunters. It was fun! Maybe we did not manage to completely master the analysis of quantitative Bundle Event Structures, but we are aware of a couple of things: our current work on probabilistic systems is rooted back to those days (and headaches ...) and our friendship too. All this thanks to Ed, who accepted having Diego around in Twente in 1992–93.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Loreti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Latella, D., Loreti, M., Massink, M. (2017). FlyFast: A Scalable Approach to Probabilistic Model-Checking Based on Mean-Field Approximation. In: Katoen, JP., Langerak, R., Rensink, A. (eds) ModelEd, TestEd, TrustEd. Lecture Notes in Computer Science(), vol 10500. Springer, Cham. https://doi.org/10.1007/978-3-319-68270-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68270-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68269-3

  • Online ISBN: 978-3-319-68270-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics