iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-67630-2_5
Design Space Exploration of the Dragonfly Topology | SpringerLink
Skip to main content

Design Space Exploration of the Dragonfly Topology

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10524))

Included in the following conference series:

Abstract

We investigate possible options of creating a Dragonfly topology capable of accommodating a specified number of end-points. We first observe that any Dragonfly topology can be described with two main parameters, imbalance and density, dictating the distribution of routers in groups, and the inter-group connectivity, respectively. We then introduce an algorithm that generates a dragonfly topology by taking the desired number of end-points and these two parameters as input. We calculate a variety of metrics on the generated topologies resulting from a large set of parameter combinations. Based on these metrics, we isolate the subset of topologies that present the best economical and performance trade-off. We conclude by summarizing guidelines for Dragonfly topology design and dimensioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable dragonfly topology. In: 2008 International Symposium on Computer Architecture, pp. 77–88, June 2008

    Google Scholar 

  2. Kim, J., Dally, W., Abts, D.: Flattened butterfly: a cost-efficient topology for high-radix networks. In: Proceedings of the 34th Annual International Symposium on Computer Architecture, ISCA 2007, New York, NY, USA, pp. 126–137 (2007)

    Google Scholar 

  3. Alverson, B., Froese, E., Kaplan, L., Roweth, D.: Cray XC series network (2012), http://www.cray.com/sites/default/files/resources/CrayXcnetwork.pdf

  4. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson, T., Kopnick, J., Higgins, M., Reinhard, J.: Cray cascade: a scalable HPC system based on a dragonfly network. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2012, Los Alamitos, CA, USA, pp. 103:1–103:9. IEEE Computer Society Press (2012)

    Google Scholar 

  5. Bhatele, A., Jain, N., Livnat, Y., Pascucci, V., Bremer, P.T.: Analyzing network health and congestion in dragonfly-based supercomputers. In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 93–102, May 2016

    Google Scholar 

  6. Jain, N., Bhatele, A., Ni, X., Wright, N.J., Kale, L.V.: Maximizing throughput on a dragonfly network. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2014, Piscataway, NJ, USA, pp. 336–347. IEEE Press (2014)

    Google Scholar 

  7. Wen, K., Samadi, P., Rumley, S., Chen, C.P., Shen, Y., Bahadroi, M., Bergman, K., Wilke, J.: Flexfly: enabling a reconfigurable dragonfly through silicon photonics. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016, Piscataway, NJ, USA, pp. 15:1–15:12. IEEE Press (2016)

    Google Scholar 

  8. Camarero, C., Vallejo, E., Beivide, R.: Topological characterization of hamming and dragonfly networks and its implications on routing. ACM Trans. Archit. Code Optim. 11, 39:1–39:25 (2014)

    Google Scholar 

  9. Rumley, S., Glick, M., Hammond, S.D., Rodrigues, A., Bergman, K.: Design methodology for optimizing optical interconnection networks in high performance systems. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS, vol. 9137, pp. 454–471. Springer, Cham (2015). doi:10.1007/978-3-319-20119-1_32

    Chapter  Google Scholar 

  10. http://www.colfaxdirect.com/. Accessed 16 Apr 2017

  11. Hastings, E., Rincon-Cruz, D., Spehlmann, M., Meyers, S., Bunde, D.P., Leung, V.J.: Comparing global link arrangements for dragonfly networks. In: 2015 IEEE International Conference on Cluster Computing, Chicago, IL, USA, pp. 361–370 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yee Teh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Teh, M.Y., Wilke, J.J., Bergman, K., Rumley, S. (2017). Design Space Exploration of the Dragonfly Topology. In: Kunkel, J., Yokota, R., Taufer, M., Shalf, J. (eds) High Performance Computing. ISC High Performance 2017. Lecture Notes in Computer Science(), vol 10524. Springer, Cham. https://doi.org/10.1007/978-3-319-67630-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67630-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67629-6

  • Online ISBN: 978-3-319-67630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics