iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-66799-7_4
Unknotted Strand Routings of Triangulated Meshes | SpringerLink
Skip to main content

Unknotted Strand Routings of Triangulated Meshes

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Included in the following conference series:

Abstract

In molecular self-assembly such as DNA origami, a circular strand’s topological routing determines the feasibility of a design to assemble to a target. In this regard, the Chinese-postman DNA scaffold routings of Benson et al. (2015) only ensure the unknottedness of the scaffold strand for triangulated topological spheres. In this paper, we present a cubic-time \(\frac{5}{3}-\)approximation algorithm to compute unknotted Chinese-postman scaffold routings on triangulated orientable surfaces of higher genus. Our algorithm guarantees every edge is routed at most twice, hence permitting low-packed designs suitable for physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By convention, if \(k=0\), then \(v_0\) is affinely independent.

  2. 2.

    Detachments are also defined in the literature [11] for multigraphs without an associated embedding.

  3. 3.

    \(X^{\star }\) is the subgraph of the dual of M induced by the duals of the cut edges.

  4. 4.

    Although stated only for Eulerian multigraphs embedded on a plane, Tsai and West’s proof also holds for Eulerian multigraphs embedded on any surface since the resplicing occurs locally at vertices.

References

  1. Abrham, J., Kotzig, A.: Construction of planar Eulerian multigraphs. In: Proceedings of Tenth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 123–130 (1979)

    Google Scholar 

  2. Benson, E., Mohammed, A., Bosco, A., Teixeira, A.I., Orponen, P., Högberg, B.: Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angew. Chem. Int. Ed. 55(31), 8869–8872 (2016)

    Article  Google Scholar 

  3. Benson, E., Mohammed, A., Gardell, J., Masich, S., Czeizler, E., Orponen, P., Högberg, B.: DNA rendering of polyhedral meshes at the nanoscale. Nature 523(7561), 441–444 (2015)

    Article  Google Scholar 

  4. Chen, J., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319), 631 (1991)

    Article  Google Scholar 

  5. Dey, T.K., Schipper, H.: A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection. Discrete Comput. Geom. 14(1), 93–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., Shih, W.M.: Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245), 414–418 (2009)

    Article  Google Scholar 

  7. Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese postman. Math. Program. 5(1), 88–124 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ellis-Monaghan, J.A., Pangborn, G., Seeman, N.C., Blakeley, S., Disher, C., Falcigno, M., Healy, B., Morse, A., Singh, B., Westland, M.: Design tools for reporter strands and DNA origami scaffold strands. Theoret. Comput. Sci. 671, 69–78 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete Comput. Geom. 31(1), 37–59 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1741)

    Google Scholar 

  11. Fleischner, H.: Eulerian Graphs and Related Topics, vol. 1. Elsevier, Amsterdam (1990)

    Google Scholar 

  12. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodman, R.P., Schaap, I.A., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310(5754), 1661–1665 (2005)

    Article  Google Scholar 

  14. Gradišar, H., Božič, S., Doles, T., Vengust, D., Hafner-Bratkovič, I., Mertelj, A., Webb, B., Šali, A., Klavžar, S., Jerala, R.: Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chem. Biol. 9(6), 362–366 (2013)

    Article  Google Scholar 

  15. Gross, J., Yellen, J.: Handbook of Graph Theory. Discrete Mathematics and Its Applications. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  16. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452(7184), 198–201 (2008)

    Article  Google Scholar 

  17. Hierholzer, C., Wiener, C.: Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6(1), 30–32 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jonoska, N., Seeman, N.C., Wu, G.: On existence of reporter strands in DNA-based graph structures. Theoret. Comput. Sci. 410(15), 1448–1460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jungnickel, D., Schade, T.: Graphs, Networks and Algorithms. Springer, New York (2008)

    Google Scholar 

  20. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

    Article  Google Scholar 

  21. Klavzar, S., Rus, J.: Stable traces as a model for self-assembly of polypeptide nanoscale polyhedrons. MATCH Commun. Math. Comput. Chem. 70, 317–330 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Kočar, V., Schreck, J.S., Čeru, S., Gradišar, H., Bašić, N., Pisanski, T., Doye, J.P., Jerala, R.: Design principles for rapid folding of knotted DNA nanostructures. Nature Commun. 7, 1–18 (2016)

    Google Scholar 

  23. Lee, J.: Introduction to Topological Manifolds, vol. 940. Springer Science & Business Media, New York (2010)

    Google Scholar 

  24. Lickorish, W.R.: An Introduction to Knot Theory, vol. 175. Springer Science & Business Media, New York (2012)

    Google Scholar 

  25. Morse, A., Adkisson, W., Greene, J., Perry, D., Smith, B., Ellis-Monaghan, J., Pangborn, G.: DNA origami and unknotted A-trails in torus graphs. arXiv preprint arXiv:1703.03799 (2017)

  26. Rolfsen, D.: Knots and Links, vol. 346. American Mathematical Society, Providence (1976)

    Google Scholar 

  27. Rothemund, P.W.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  28. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)

    Article  Google Scholar 

  29. Seeman, N.C.: Nucleic acid junctions and lattices. J. Theoret. Biol. 99(2), 237–247 (1982)

    Article  Google Scholar 

  30. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975), 618–621 (2004)

    Article  Google Scholar 

  31. Singmaster, D., Grossman, J.W.: E2897. Am. Math. Mon. 90(4), 287–288 (1983)

    Article  Google Scholar 

  32. Tsai, M.T., West, D.B.: A new proof of 3-colorability of Eulerian triangulations. Ars Mathematica Contemporanea 4(1), 73–77 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Veneziano, R., Ratanalert, S., Zhang, K., Zhang, F., Yan, H., Chiu, W., Bathe, M.: Designer nanoscale DNA assemblies programmed from the top down. Science 352(6293), 1534–1534 (2016)

    Article  Google Scholar 

  34. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)

    Article  Google Scholar 

  35. Wu, G., Jonoska, N., Seeman, N.C.: Construction of a DNA nano-object directly demonstrates computation. Biosystems 98(2), 80–84 (2009)

    Article  Google Scholar 

  36. Zheng, J., Birktoft, J.J., Chen, Y., Wang, T., Sha, R., Constantinou, P.E., Ginell, S.L., Mao, C., Seeman, N.C.: From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260), 74–77 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulmelik Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mohammed, A., Hajij, M. (2017). Unknotted Strand Routings of Triangulated Meshes. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics