iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-63309-1_47
MD-MSVMs: A Human Promoter Recognition Method Based on Single Nucleotide Statistics and Multilayer Decision | SpringerLink
Skip to main content

MD-MSVMs: A Human Promoter Recognition Method Based on Single Nucleotide Statistics and Multilayer Decision

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10361))

Included in the following conference series:

  • 3077 Accesses

Abstract

The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Nucleotide content is a multiple utility in bioinformatics details analysis. The single nucleotide statistics method based on nucleotide content can help extract features with higher separability and make decision. In this paper, a human promoter recognition method based on multiple gene features and multilayer decision, which is called MD-MSVMs, is proposed. In our method, we firstly perform single nucleotide analysis and divide the gene set into two parts. Secondly, the multiple gene features are extracted from each part, including CpG-island, n-mer and rigidity. And then, based on multiple features, multiple support vector machines and multilayer decision model are combined to construct a human promoter recognition framework, which is flexible and can integrate new feature extraction or new classification models freely. Experimental result shows that our method has better performance and helps understanding multiple features integrating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajic, V.B., Chong, A., Seah, S.H., et al.: An intelligent system for vertebrate promoter recognition. IEEE Intell. Syst. 17(4), 64–70 (2002)

    Article  Google Scholar 

  2. Fickett, J.W., Hatzigeorgiou, A.G.: Eukaryotic promoter recognition. Genome Res. 7, 861–878 (1997)

    Article  Google Scholar 

  3. Umesh, P., Dubey, J.K., Karthika, R.V., et al.: A novel sequence and context based method for promoter recognition. Bioinformation 10(4), 175–179 (2014)

    Article  Google Scholar 

  4. Zeng, J., Zhao, X.Y., Cao, X.Q., Yan, H.: SCS: signal, context, and structure features for genome-wide human promoter recognition. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(3), 550–562 (2010)

    Article  Google Scholar 

  5. Deng, J., Liang, H., Zhang, R., et al.: Methylated CpG site count of dapper homolog 1 (DACT1) promoter prediction the poor survival of gastric cancer. Am. J. Cancer Res. 4, 518–527 (2014)

    Google Scholar 

  6. Saxonov, S., Berg, P., Brutlag, D.L.: A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. U.S.A. 103, 1412–1417 (2015)

    Article  Google Scholar 

  7. Huang, W.L., Tung, C.W., Liaw, C., Huang, H.L., Ho, S.Y.: Rule-based knowledge acquisition method for promoter prediction in human and Drosophila species. Sci. World J. 2014, 1–14 (2014)

    Google Scholar 

  8. Vinga, S.: Information theory applications for biological sequence analysis. Brief. Bioinform. 15(3), 376–389 (2014)

    Article  Google Scholar 

  9. Fujii, S., Kono, H., Takenaka, S., Go, N., Sarai, A.: Sequence-dependent DNA deformability studied using molecular dynamics simulations. Nucleic Acids Res. 35, 6063–6074 (2007)

    Article  Google Scholar 

  10. Gan, Y., Guan, J., Zhou, S.: A comparison study on feature selection of DNA structural properties for promoter prediction. BMC Bioinform. 7, 13–14 (2012)

    Google Scholar 

  11. Anwar, F., Baker, S.M., Jabid, T., Mehedi, H.M., Shoyaib, M., Khan, H., Walshe, R.: Pol II promoter prediction using characteristic 4-mer motifs: a machine learning approach. BMC Bioinform. 9(1), 414–418 (2008)

    Article  Google Scholar 

  12. Zhao, X.Y., Zhang, J., Chen, Y.Y., Li, Q., Yang, T., Pian, C., Zhang, L.Y.: Promoter recognition based on the maximum entropy hidden Markov model. Comput. Biol. Med. 51, 73–81 (2014)

    Article  Google Scholar 

  13. Li, Y., Lee, K.K., Walsh, S., Smith, C., Hadingham, S., Sorefan, K., Cawley, G., Bevan, M.W.: Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res. 16(3), 414–427 (2006)

    Article  Google Scholar 

  14. Lu, J., Luo, L.: Prediction for human transcription start site using diversity measure with quadratic discriminant. Bioinformation 2(7), 316–321 (2008)

    Article  Google Scholar 

  15. Wang, J., Ungar, L.H., Tseng, H., Hannenhalli, S.: MetaProm: a neural network based meta-predictor for alternative human promoter prediction. BMC Genom. 8, 374 (2007)

    Article  Google Scholar 

  16. Xie, X., Wu, S., Lam, K., Yan, H.: PromoterExplorer: an effective promoter identification method based on the AdaBoost algorithm. Bioinformatics 22, 2722–2728 (2006)

    Article  Google Scholar 

  17. Suzuki, A., Wakaguri, H., Yamashita, R., Kawano, S., Tsuchihara, K., Sugano, S., Suzuki, Y., Nakai, K.: DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data. Nucleic Acids Res. 43(Database issue), D87–D91 (2014)

    Google Scholar 

  18. Zeng, J., Cao, X., Yan, H.: Human promoter recognition using Kullback-Leibler divergence. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 6, pp. 3319–3325 (2007)

    Google Scholar 

  19. Goddard, N.L., Bonnet, G., Krichevsky, O., Libchaber, A.: Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 85, 2400–2403 (2000)

    Article  Google Scholar 

  20. Zeng, J., Zhu, S., Yan, H.: Towards accurate human promoter recognition: a review of currently used sequence features and classification methods. Brief. Bioinform. 10, 498–508 (2009)

    Article  Google Scholar 

  21. Brukner, I., Sanchez, R., Suck, D., Pongor, S.: Sequence-dependent bending propensity of DNA as revealed by DNase I. parameters for trinucleotides. EMBO J. 14, 1812–1818 (1995)

    Google Scholar 

  22. Li, W., Kou, Q., Wei, L., Liu, J.: Plant promoter recognition based on analysis of base bias and SVM. J. Liaoning Normal Univ. (Natural Science Edition) 35, 183–187 (2012)

    Google Scholar 

  23. Saxonov, S., Daizadeh, I., Fedorov, A., Gilbert, W.: EID: the exon-intron database — an exhaustive database of protein coding intron-containing genes. Nucleic Acids Res. 28, 185–190 (2000)

    Article  Google Scholar 

  24. Licciulli, Mignone, F., Gissi, C., Saccone, C.: F., Gissi, C., Saccone, C.: UTRdb and UTRsite: specialized databases of sequences and functional elements of 5’ and 3’ untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 30, 335–340 (2002)

    Article  Google Scholar 

  25. Vapnik, V., Cortes, C.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  26. Bajic, V.B.: Comparing the success of different prediction programs in sequence analysis: a review. Brief. Bioinform. 1(3), 214–228 (2000)

    Article  Google Scholar 

  27. Zhu, L., Guo, W.L., Lu, C., Huang, D.S.: Collaborative completion of transcription factor binding profiles via local sensitive unified embedding. IEEE Trans. Nanobiosci. PP(99), 1 (2016)

    Google Scholar 

  28. Liang, X., Zhu, L., Huang, D.S.: Multi-task ranking SVM for image cosegmentaiton. Neurocomputing (2017)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the grants of the National Science Foundation of China, Nos. 31571364, U1611265, 61532008, 61672203, 61402334, 61472282, 61520106006, 61472280, 61472173, 61572447, 61373098 and 61672382, China Postdoctoral Science Foundation Grant, Nos. 2016M601646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, W., Bao, W., Yuan, L., Jiang, Z. (2017). MD-MSVMs: A Human Promoter Recognition Method Based on Single Nucleotide Statistics and Multilayer Decision. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10361. Springer, Cham. https://doi.org/10.1007/978-3-319-63309-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63309-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63308-4

  • Online ISBN: 978-3-319-63309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics