iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-59870-3_15
An Efficient Toolkit for Computing Private Set Operations | SpringerLink
Skip to main content

An Efficient Toolkit for Computing Private Set Operations

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10343))

Included in the following conference series:

Abstract

Private set operation (PSO) protocols provide a natural way of securely performing operations on data sets, such that crucial details of the input sets are not revealed. Such protocols have an ever-increasing number of practical applications, particularly when implementing privacy-preserving data mining schemes. Protocols for computing private set operations have been prevalent in multi-party computation literature over the past decade, and in the case of private set intersection (PSI), have become practically feasible to run in real applications. In contrast, other set operations such as union have received less attention from the research community, and the few existing designs are often limited in their feasibility. In this work we aim to fill this gap, and present a new technique using Bloom filter data structures and additive homomorphic encryption to develop the first private set union protocol with both linear computation and communication complexities. Moreover, we show how to adapt this protocol to give novel ways of computing PSI and private set intersection/union cardinality with only minor changes to the protocol computation. Our work resembles therefore a toolkit for scalable private set computation with linear complexities, and we provide a thorough experimental analysis that shows that the online phase of our designs is practical up to large set sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is however possible to enforce bilateral output by running the protocol twice and swapping the roles.

  2. 2.

    This can be easily done by padding the smaller of the two sets up to the size of the larger one.

  3. 3.

    github.com/roasbeef/go-go-gadget-paillier.

  4. 4.

    github.com/mcornejo/go-go-gadget-paillier.

  5. 5.

    We do not provide estimates for the 2048 bit case since they are derivable by doubling the 1024 bit estimates.

References

  1. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 2012, pp. 40–41. ACM Press, May 2012

    Google Scholar 

  2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  3. Bose, P., Guo, H., Kranakis, E., Maheshwari, A., Morin, P., Morrison, J., Smid, M.H.M., Tang, Y.: On the false-positive rate of bloom filters. Inf. Process. Lett. 108(4), 210–213 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005). doi:10.1007/11593447_13

    Chapter  Google Scholar 

  5. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35404-5_17

    Chapter  Google Scholar 

  6. Davidson, A., Fenn, G., Cid, C.: A model for secure and mutually beneficial software vulnerability sharing. In: Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security (WISCS 2016), pp. 3–14, New York, NY, USA. ACM (2016)

    Google Scholar 

  7. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14577-3_13

    Chapter  Google Scholar 

  8. Debnath, S.K., Dutta, R.: Efficient private set intersection cardinality in the presence of malicious adversaries. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 326–339. Springer, Cham (2015). doi:10.1007/978-3-319-26059-4_18

    Google Scholar 

  9. Debnath, S.K., Dutta, R.: Secure and efficient private set intersection cardinality using bloom filter. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 209–226. Springer, Cham (2015). doi:10.1007/978-3-319-23318-5_12

    Chapter  Google Scholar 

  10. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 789–800. ACM Press (2013)

    Google Scholar 

  11. Egert, R., Fischlin, M., Gens, D., Jacob, S., Senker, M., Tillmanns, J.: Privately computing set-union and set-intersection cardinality via bloom filters. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 413–430. Springer, Cham (2015). doi:10.1007/978-3-319-19962-7_24

    Chapter  Google Scholar 

  12. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  13. Frikken, K.: Privacy-preserving set union. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 237–252. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5_16

    Chapter  Google Scholar 

  14. Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious adversaries. J. Cryptol. 25(3), 383–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hormozdiari, F., Joo, J.W.J., Wadia, A., Guan, F., Ostrovsky, R., Sahai, A., Eskin, E.: Privacy preserving protocol for detecting genetic relatives using rare variants. Bioinformatics 30(12), 204–211 (2014)

    Article  Google Scholar 

  16. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better than custom protocols? In: NDSS 2012. The Internet Society, February 2012

    Google Scholar 

  17. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryption. In: Youm, H.Y., Won, Y. (eds.) ASIACCS 2012, pp. 85–86. ACM Press, May 2012

    Google Scholar 

  18. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005). doi:10.1007/11535218_15

    Chapter  Google Scholar 

  19. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 818–829. ACM Press (2016)

    Google Scholar 

  20. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: Proceedings of the 1986 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 7–9, 1986, pp. 134–137 (1986)

    Google Scholar 

  21. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  22. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: USENIX Security Symposium, pp. 515–530. USENIX Association (2015)

    Google Scholar 

  23. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22 August, 2014, pp. 797–812 (2014)

    Google Scholar 

  24. Rindal, P., Rosulek, M.: Improved private set intersection against malicious adversaries. Cryptology ePrint Archive, Report 2016/746 (2016). http://eprint.iacr.org/2016/746

  25. Seo, J.H., Cheon, J.H., Katz, J.: Constant-round multi-party private set union using reversed laurent series. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 398–412. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_24

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sumit Debnath, Mikkel Lambaek and Claudio Orlandi for their help in establishing problems with previous versions of this work. This work was supported by the EPSRC and the UK Government as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/K035584/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Davidson .

Editor information

Editors and Affiliations

A Runtimes and Communication from Previous Work

A Runtimes and Communication from Previous Work

See Tables 6 and 7.

Table 6. Runtimes (seconds) taken from [23]
Table 7. Communication costs (mb) taken from [23]

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Davidson, A., Cid, C. (2017). An Efficient Toolkit for Computing Private Set Operations. In: Pieprzyk, J., Suriadi, S. (eds) Information Security and Privacy. ACISP 2017. Lecture Notes in Computer Science(), vol 10343. Springer, Cham. https://doi.org/10.1007/978-3-319-59870-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59870-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59869-7

  • Online ISBN: 978-3-319-59870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics