iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-57141-6_1
Improving Algorithmic Optimisation Method by Spectral Clustering | SpringerLink
Skip to main content

Improving Algorithmic Optimisation Method by Spectral Clustering

  • Conference paper
  • First Online:
Software Engineering Trends and Techniques in Intelligent Systems (CSOC 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 575))

Included in the following conference series:

Abstract

In this paper, a spectral algorithm for effort estimation is evaluated. As effort prediction method the Algorithmic Optimisation Method is employed. Spectral clustering is used in version of normalized Laplacian matrix and k-means algorithm is used for clustering eigenvectors. Results shows that clustering lowers a Mean Absolute Percentage Error by 6% and Sum of Squared Errors/Residuals is decreased by 43,5%. Difference in mean value of residuals is statically significant (p = 0.0041, at 0.05 level).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Silhavy, R., Silhavy, P., Prokopova, Z.: Algorithmic optimisation method for improving use case points estimation. PLoS ONE 10, e0141887 (2015)

    Article  Google Scholar 

  2. Karner, G.: Metrics for objectory. Diploma, University of Linkoping, Sweden, No. LiTH-IDA-Ex-9344, vol. 21, December 1993

    Google Scholar 

  3. Ochodek, M., Alchimowicz, B., Jurkiewicz, J., Nawrocki, J.: Improving the reliability of transaction identification in use cases. Inf. Softw. Technol. 53, 885–897 (2011)

    Article  Google Scholar 

  4. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on Use Case Points. Inf. Softw. Technol. 53, 200–213 (2011)

    Article  Google Scholar 

  5. Anandhi, V., Chezian, R.M.: Regression techniques in software effort estimation using cocomo dataset. In: 2014 International Conference on Intelligent Computing Applications (ICICA 2014), pp. 353–357 (2014)

    Google Scholar 

  6. Jorgensen, M.: Regression models of software development effort estimation accuracy and bias. Empirical Softw. Eng. 9, 297–314 (2004)

    Article  Google Scholar 

  7. Nassif, A.B., Ho, D., Capretz, L.F.: Towards an early software estimation using log-linear regression and a multilayer perceptron model. J. Syst. Softw. 86, 144–160 (2013)

    Article  Google Scholar 

  8. Urbanek, T., Prokopova, Z., Silhavy, R., Vesela, V.: Prediction accuracy measurements as a fitness function for software effort estimation. Springerplus 4, 17 (2015)

    Article  Google Scholar 

  9. Azzeh, M., Nassif, A.B.: Analogy-based effort estimation: a new method to discover set of analogies from dataset characteristics. IET Softw. 9, 39–50 (2015)

    Article  Google Scholar 

  10. Azzeh, M., Nassif, A.B.: A hybrid model for estimating software project effort from Use Case Points. Appl. Soft Comput. 49, 981–989 (2016)

    Article  Google Scholar 

  11. Bardsiri, V.K., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.: Increasing the accuracy of software development effort estimation using projects clustering. IET Softw. 6, 461–473 (2012)

    Article  Google Scholar 

  12. Bardsiri, V.K., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.: A flexible method to estimate the software development effort based on the classification of projects and localization of comparisons. Empirical Softw. Eng. 19, 857–884 (2014)

    Article  Google Scholar 

  13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 IEEE International Conference on Neural Networks Proceedings, vol. 1–6, pp. 1942–1948 (1995)

    Google Scholar 

  14. Hihn, J., Juster, L., Johnson, J., Menzies, T., Michael, G.: Improving and expanding NASA software cost estimation methods. In: IEEE Aerospace Conference 2016, pp. 1–12 (2016)

    Google Scholar 

  15. Silhavy, R., Silhavy, P., Prokopova, Z.: Analysis and selection of a regression model for the Use Case Points method using a stepwise approach. J. Syst. Softw. 125, 1–14 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radek Silhavy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Silhavy, R., Silhavy, P., Prokopova, Z. (2017). Improving Algorithmic Optimisation Method by Spectral Clustering. In: Silhavy, R., Silhavy, P., Prokopova, Z., Senkerik, R., Kominkova Oplatkova, Z. (eds) Software Engineering Trends and Techniques in Intelligent Systems. CSOC 2017. Advances in Intelligent Systems and Computing, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-57141-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57141-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57140-9

  • Online ISBN: 978-3-319-57141-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics