iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-53733-7_13
On the Complexity of Hard Enumeration Problems | SpringerLink
Skip to main content

On the Complexity of Hard Enumeration Problems

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10168))

Abstract

Complexity theory provides a wealth of complexity classes for analyzing the complexity of decision and counting problems. Despite the practical relevance of enumeration problems, the tools provided by complexity theory for this important class of problems are very limited. In particular, complexity classes analogous to the polynomial hierarchy and an appropriate notion of problem reduction are missing. In this work, we lay the foundations for a complexity theory of hard enumeration problems by proposing a hierarchy of complexity classes and by investigating notions of reductions for enumeration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Bagan, G., Durand, A., Grandjean, E.: On acyclic conjunctive queries and constant delay enumeration. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 208–222. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74915-8_18

    Chapter  Google Scholar 

  3. Brault-Baron, J.: De la pertinence de l’énumération : complexité en logiques propositionnelle et du premier ordre. (The relevance of the list: propositional logic and complexity of the first order). Ph.D. thesis, University of Caen Normandy, France (2013). https://tel.archives-ouvertes.fr/tel-01081392

  4. Creignou, N., Hébrard, J.J.: On generating all solutions of generalized satisfiability problems. Informatique Théorique et Applications 31(6), 499–511 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H.: On the complexity of hard enumeration problems. CoRR abs/1610.05493 (2016), http://arxiv.org/abs/1610.05493

  6. Creignou, N., Vollmer, H.: Parameterized complexity of weighted satisfiability problems: decision, enumeration, counting. Fundam. Inform. 136(4), 297–316 (2015). http://dx.doi.org/10.3233/FI-2015-1159

    MathSciNet  MATH  Google Scholar 

  7. Durand, A., Grandjean, E.: First-order queries on structures of bounded degree are computable with constant delay. ACM Trans. Comput. Log. 8(4), 21/1–21/19 (2007). http://doi.acm.org/10.1145/1276920.1276923

    Article  MathSciNet  Google Scholar 

  8. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durand, A., Schweikardt, N., Segoufin, L.: Enumerating answers to first-order queries over databases of low degree. In: Proceedings of PODS 2014, pp. 121–131. ACM (2014)

    Google Scholar 

  10. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1), 3–42 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hemachandra, L.A.: The strong exponential hierarchy collapses. In: Proceedings of STOC 1987, pp. 110–122. ACM (1987)

    Google Scholar 

  12. Hemaspaandra, L.A., Vollmer, H.: The satanic notations: counting classes beyond #P and other definitional adventures. SIGACT News 26(1), 2–13 (1995)

    Article  Google Scholar 

  13. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kimelfeld, B., Kolaitis, P.G.: The complexity of mining maximal frequent subgraphs. ACM Trans. Database Syst. 39(4), 32:1–32:33 (2014). http://doi.acm.org/10.1145/2629550

    Article  MathSciNet  Google Scholar 

  15. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci. 17(2), 270–279 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC 1978, pp. 216–226. ACM Press (1978)

    Google Scholar 

  17. Strozecki, Y.: Enumeration complexity and matroid decomposition. Ph.D. thesis, Universite Paris Diderot - Paris 7, December 2010. http://www.prism.uvsq.fr/~ ystr/these_strozecki

  18. Strozecki, Y.: On enumerating monomials and other combinatorial structures by polynomial interpolation. Theory Comput. Syst. 53(4), 532–568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Vienna Science and Technology Fund (WWTF) through project ICT12-015, the Austrian Science Fund (FWF): P25207-N23, P25518-N23, I836-N23, W1255-N23 and the French Agence Nationale de la Recherche, AGGREG project reference ANR-14-CE25-0017-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kröll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H. (2017). On the Complexity of Hard Enumeration Problems. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2017. Lecture Notes in Computer Science(), vol 10168. Springer, Cham. https://doi.org/10.1007/978-3-319-53733-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53733-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53732-0

  • Online ISBN: 978-3-319-53733-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics