iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-49787-7_4
Distributed and Asynchronous Methods for Semi-supervised Learning | SpringerLink
Skip to main content

Distributed and Asynchronous Methods for Semi-supervised Learning

  • Conference paper
  • First Online:
Algorithms and Models for the Web Graph (WAW 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10088))

Included in the following conference series:

Abstract

We propose two asynchronously distributed approaches for graph-based semi-supervised learning. The first approach is based on stochastic approximation, whereas the second approach is based on randomized Kaczmarz algorithm. In addition to the possibility of distributed implementation, both approaches can be naturally applied online to streaming data. We analyse both approaches theoretically and by experiments. It appears that there is no clear winner and we provide indications about cases of superiority for each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avrachenkov, K., Dobrynin, V., Nemirovsky, D., Pham, S.K. Smirnova, E.: PageRank based clustering of hypertext document collections. In: Proceedings of ACM SIGIR (2008)

    Google Scholar 

  2. Avrachenkov, K., Gonçalves, P., Mishenin, A., and Sokol, M.: Generalized optimization framework for graph-based semi-supervised learning. In: Proceedings of SDM (2012)

    Google Scholar 

  3. Avrachenkov, K., Chebotarev, P., Mishenin, A.: Semi-supervised learning with regularized Laplacian. Accepted in Optimization Methods & Software (2016)

    Google Scholar 

  4. Bengio, Y., Delalleau, O., Le Roux, N.: Label propagation and quadratic criterion. In: Semi-supervised Learning, ch. 10 (2006)

    Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  6. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan Publishing Agency, Cambridge University Press, New Delhi, Cambridge (2008)

    MATH  Google Scholar 

  7. Borkar, V.S., Karamchandani, N., Mirani, S.: Randomized Kaczmarz for rank aggregation from pairwise comparisons. In: IEEE ITW (2016)

    Google Scholar 

  8. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised Learning. MIT Press, London (2006)

    Book  Google Scholar 

  9. Chebotarev, P., Shamis, E.: The matrix-forest theorem and measuring relations in small social groups. Autom. Remote Control 58(9), 1505–1514 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Craven, M., McCallum, A., PiPasquo, D., Mitchell, T., Freitag, D.: Learning to extract symbolic knowledge from the World Wide Web (No. CMU-CS-98-122). School of computer Science, Carnegie-Mellon University, Pittsburgh, PA (1998)

    Google Scholar 

  11. Fouss, F., Francoisse, K., Yen, L., Pirotte, A., Saerens, M.: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw. 31, 53–72 (2012)

    Article  MATH  Google Scholar 

  12. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. PNAS USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gleich, D.F., Mahoney, M.W.: Using local spectral methods to robustify graph-based learning algorithms. In: Proceedings of ACM SIGKDD (2015)

    Google Scholar 

  14. Gower, R.M., Richtárik, P.: Randomized iterative methods for linear systems. SIAM J. Matrix Anal. Appl. 36(4), 1660–1690 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito, T., Shimbo, M., Kudo, T., Matsumoto, Y.: Application of kernels to link analysis. In: Proceedings of ACM SIGKDD (2005)

    Google Scholar 

  16. Liu, J., Wright, S.J., Sridhar, S.: An asynchronous parallel randomized Kaczmarz algorithm (2014). arXiv preprint: arXiv:1401.4780

  17. Needell, D., Ward, R., Srebro, N.: Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm. In: Proceedings of NIPS (2014)

    Google Scholar 

  18. Pan, J.J., Pan, S.J., Yin, J., Ni, L.M., Yang, Q.: Tracking mobile users in wireless networks via semi-supervised colocalization. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 587–600 (2012)

    Article  Google Scholar 

  19. Ravi, S., Diao, Q.: Large scale distributed semi-supervised learning using streaming approximation. In: Proceedings of AISTATS (2016)

    Google Scholar 

  20. Shivanna, R., Chatterjee, B.K., Sankaran, R., Bhattacharyya, C., Bach, F.: Spectral norm regularization of orthonormal representations for graph transduction. In: Advances in Neural Information Processing Systems, pp. 2215–2223 (2015)

    Google Scholar 

  21. Smola, A.J., Kondor, R.: Kernels and regularization on graphs. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 144–158. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45167-9_12

    Chapter  Google Scholar 

  22. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 442–457. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04174-7_29

    Chapter  Google Scholar 

  24. Valko, M., Kveton, B., Huang, L., Ting, D.: Online semi-supervised learning on quantized graphs. In: Proceedings of UAI (2010)

    Google Scholar 

  25. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. Adv. Neural Inf. Process. Syst. 16, 321–328 (2004)

    Google Scholar 

  26. Zhou, D., Burges, C.J.: Spectral clustering and transductive learning with multiple views. In: Proceedings of ICML (2007)

    Google Scholar 

  27. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of ICML (2003)

    Google Scholar 

  28. Zhu, X.: Semi-supervised learning: literature survey. University of Wisconsin-Madison Research report TR 1530 (2005)

    Google Scholar 

  29. Zhu, X., Goldberg, A.B.: Introduction to Semi-supervised Learning. Morgan & Claypool, San Rafael (2009)

    MATH  Google Scholar 

  30. Zouzias, A., Freris, N.M.: Randomized gossip algorithms for solving Laplacian systems. In: Proceedings of ECC (2015)

    Google Scholar 

Download references

Acknowledgement

This work was supported by CEFIPRA grant no. 5100-IT1 “Monte Carlo and Learning Schemes for Network Analytics,” and Inria Nokia Bell Labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Avrachenkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Avrachenkov, K., Borkar, V.S., Saboo, K. (2016). Distributed and Asynchronous Methods for Semi-supervised Learning. In: Bonato, A., Graham, F., Prałat, P. (eds) Algorithms and Models for the Web Graph. WAW 2016. Lecture Notes in Computer Science(), vol 10088. Springer, Cham. https://doi.org/10.1007/978-3-319-49787-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49787-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49786-0

  • Online ISBN: 978-3-319-49787-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics