iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-49169-1_1
Study of the Effect of Reducing Training Data in Speech Synthesis Adaptation Based on Frequency Warping | SpringerLink
Skip to main content

Study of the Effect of Reducing Training Data in Speech Synthesis Adaptation Based on Frequency Warping

  • Conference paper
  • First Online:
Advances in Speech and Language Technologies for Iberian Languages (IberSPEECH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10077))

  • 714 Accesses

Abstract

Speaker adaptation techniques use a small amount of data to modify Hidden Markov Model (HMM) based speech synthesis systems to mimic a target voice. These techniques can be used to provide personalized systems to people who suffer some speech impairment and allow them to communicate in a more natural way. Although the adaptation techniques don’t require a big quantity of data, the recording process can be tedious if the user has speaking problems. To improve the acceptance of these systems an important factor is to be able to obtain acceptable results with minimal amount of recordings. In this work we explore the performance of an adaptation method based on Frequency Warping which uses only vocalic segments according to the amount of available training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor, P.: Text-to-Speech Synthesis. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Zen, H., Tokuda, K., Black, A.: Statistical parametric speech synthesis. Speech Commun. 51(11), 1039–1064 (2009)

    Article  Google Scholar 

  3. Yamagishi, J., Nose, T., Zen, H., Ling, Z.H., Toda, T., Tokuda, K., King, S., Renals, S.: Robust speaker-adaptive HMM-based text-to-speech synthesis. IEEE Trans. Audio Speech Lang. Process. 17(6), 1208–1230 (2009)

    Article  Google Scholar 

  4. Yamagishi, J., Veaux, C., King, S., Renals, S.: Speech synthesis technologies for individuals with vocal disabilities: voice banking and reconstruction. Acoust. Sci. Technol. 33(1), 1–5 (2012)

    Article  Google Scholar 

  5. Creer, S., Cunningham, S., Green, P., Yamagishi, J.: Building personalised synthetic voices for individuals with severe speech impairment. Comput. Speech Lang. 27(6), 1178–1193 (2013)

    Article  Google Scholar 

  6. Lanchantin, P., Veaux, C., Gales, M.J.F., King, S., Yamagishi, J.: Reconstructing voices within the multiple-average-voice-model framework. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association (Interspeech), Dresden, Germany, pp. 2232–2236 (2015)

    Google Scholar 

  7. Alonso, A., Erro, D., Navas, E., Hernaez, I.: Speaker adaptation using only vocalic segments via frequency warping. In: Proceedings of the 16th Annual Conference of the International Speech Communication Association (Interspeech), Dresden, Germany, pp. 2764–2768 (2015)

    Google Scholar 

  8. Kawahara, H., Masuda-Katsusue, I., de Cheveigne, A.: Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction: possible role of a repetitive structure in sounds. Speech Commun. 27, 187–207 (1999)

    Article  Google Scholar 

  9. Erro, D., Sainz, I., Navas, E., Hernaez, I.: Harmonics plus noise model based vocoder for statistical parametric speech synthesis. IEEE J. Sel. Top. Signal Process. 8(2), 184–194 (2014)

    Article  Google Scholar 

  10. Zen, H., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.: A hidden semi-Markov model-based speech synthesis system. IEICE Trans. Inf. Syst. E90-D(5), 825–834 (2007)

    Google Scholar 

  11. Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., Kitamura, T.: Speech parameter generation algorithms for HMM-based speech synthesis, vol. 30, pp. 1315–1318 (2000)

    Google Scholar 

  12. Yamagishi, J.: A training method of average voice model for HMM-based speech synthesis using MLLR. IEICE Trans. Inf. Syst. 86(8), 1956–1963 (2003)

    Google Scholar 

  13. Gales, M.J.F.: Maximum likelihood linear transformations for HMM-based speech recognition. Comput. Speech Lang. 12(2), 75–98 (1998)

    Article  Google Scholar 

  14. Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K., Isogai, J.: Analysis of speaker adaptation algorthims for HMM-based speech synthesis and a constrained SMAPLR adaptation algorithm. IEEE Trans. Audio Speech Lang. Process. 19(1), 66–83 (2009)

    Article  Google Scholar 

  15. Erro, D., Alonso, A., Serrano, L., Navas, E., Hernaez, I.: Interpretable parametric voice conversion functions based on Gaussian mixture models and constrained transformations. Comput. Speech Lang. 30, 3–15 (2015)

    Article  Google Scholar 

  16. Erro, D., Moreno, A., Bonafonte, A.: Voice conversion based on weighted frequency warping. IEEE Trans. Audio Speech Lang. Process. 18(5), 922–931 (2010)

    Article  Google Scholar 

  17. Zorila, T.C., Erro, D., Hernaez, I.: Improving the quality of standard GMM-based voice conversion systems by considering physically motivated linear transformations. Commun. Comput. Inf. Sci. 328, 30–39 (2012)

    Article  Google Scholar 

  18. Godoy, E., Rosec, O., Chonavel, T.: Voice conversion using dynamic frequency warping with amplitude scaling, for parallel or nonparallel corpora. IEEE Trans. Audio Speech Lang. Process. 20(4), 1313–1323 (2012)

    Article  Google Scholar 

  19. Erro, D., Navas, E., Hernaez, I.: Parametric voice conversion based on bilinear frequency warping plus amplitude scaling. IEEE Trans. Audio Speech Lang. Process. 21(3), 556–566 (2013)

    Article  Google Scholar 

  20. Pitz, M., Ney, H.: Vocal tract normalization equals linear transformation in cepstral space. IEEE Trans. Speech Audio Process. 13, 930–944 (2005)

    Article  Google Scholar 

  21. Valbret, H., Moulines, E., Tubach, J.P.: Voice transformation using PSOLA technique. Speech Commun. 11(2–3), 175–187 (1992)

    Article  Google Scholar 

  22. Cappé, O., Laroche, J., Moulines, E.: Regularized estimation of cepstrum envelope from discrete frequency points. In: IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 213–216 (1995)

    Google Scholar 

  23. Erro, D., Hernáez, I., Navas, E., Alonso, A., Arzelus, H., Jauk, I., Hy, N.Q., Magariños, C., Pérez-Ramón, R., Sulír, M., Tian, X., Wang, X., Ye, J.: ZureTTS: online platform for obtaining personalized synthetic voices. In: Proceedings of eNTERFACE 2014 (2014)

    Google Scholar 

  24. Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P., et al.: The HTK Book, version 3.4 (2006)

    Google Scholar 

Download references

Acknowledgments

This work has been partially supported by MINECO/FEDER, UE (SpeechTech4All project, TEC2012-38939-C03-03 and RESTORE project, TEC2015-67163-C2-1-R), and the Basque Government (ELKAROLA project, KK-2015/00098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Alonso, A., Erro, D., Navas, E., Hernaez, I. (2016). Study of the Effect of Reducing Training Data in Speech Synthesis Adaptation Based on Frequency Warping. In: Abad, A., et al. Advances in Speech and Language Technologies for Iberian Languages. IberSPEECH 2016. Lecture Notes in Computer Science(), vol 10077. Springer, Cham. https://doi.org/10.1007/978-3-319-49169-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49169-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49168-4

  • Online ISBN: 978-3-319-49169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics