iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-48680-2_48
Visual Target Detection and Tracking in UAV EO/IR Videos by Moving Background Subtraction | SpringerLink
Skip to main content

Visual Target Detection and Tracking in UAV EO/IR Videos by Moving Background Subtraction

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10016))

Abstract

In the last years the Italian Aerospace Research Center (CIRA) designed many versions of on-board payload management software for Unmanned Aerial Vehicles (UAVs), to be used in ISTAR (Intelligence, Surveillance, Target Acquisition and Reconnaissance) missions. A typical required function in these software suites is detection and tracking of moving ground vehicles.

In this work, we propose a detection and tracking approach to moving objects that is suitable when the background is static in the real world and appears to be affected of global motion in the image plane. Each object is described as a set of SURF points enhanced with a related appearance model. Experiments on real world video sequences confirm the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Data can be downloaded at http://vision.cse.psu.edu/data/vividEval.

References

  1. Garibotto, G., et al.: White paper on industrial applications of computer vision and pattern recognition. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8157, pp. 721–730. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41184-7_73

    Chapter  Google Scholar 

  2. EARTO: The TRL scale as a research & innovation policy tool, April 2014. http://www.earto.eu/fileadmin/content/03_Publications/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf

  3. Angelino, C.V., Baraniello, V.R., Cicala, L.: High altitude UAV navigation using IMU, GPS and camera. In: Proceedings of the 16th International Conference onInformation Fusion (FUSION), Istanbul, Turkey, pp. 647–654, July 2013

    Google Scholar 

  4. Cicala, L., Angelino, C.V., Raimondo, N., Baccaglini, E., Gavelli, M.: An H.264 sensor aided encoder for aerial video sequences with in-the-loop metadata enhancement. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2015. LNCS, vol. 9386, pp. 853–863. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25903-1_73

    Chapter  Google Scholar 

  5. Irvine, J.M.: National imagery interpretability rating scales (NIIRS): overview and methodology. In: Optical Science, Engineering and Instrumentation 1997. International Society for Optics and Photonics, pp. 93–103 (1997)

    Google Scholar 

  6. Rafi, F., Khan, S., Shafiq, K., Shah, M.: Autonomous target following by unmanned aerial vehicles. In: Defense and Security Symposium. International Society for Optics and Photonics, p. 623010 (2006)

    Google Scholar 

  7. Shaferman, V., Shima, T.: Unmanned aerial vehicles cooperative tracking of moving ground target in urban environments. J. Guidance Control Dyn. 31(5), 1360–1371 (2008)

    Article  Google Scholar 

  8. Symington, A., Waharte, S., Julier, S., Trigoni, N.: Multi target tracking on aerial videos. In: ISPRS Istanbul Workshop 2010 on Modeling of Optical Airborne and Spaceborne Sensors, Istambul, Turkey, October 2010

    Google Scholar 

  9. Gelertm, M., Csaba, B., Tamas, S.: Probabilistic target detection by camera-equipped UAVs. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, October 2010

    Google Scholar 

  10. Rodríguez-Canosa, G., Thomas, S., del Cerro, J., Barrientos, A., MacDonald, B.: A real-time method to detect and track moving objects (DATMO) from unmanned aerial vehicles (UAVs) using a single camera. Remote Sens. 4(4), 1090–1111 (2012)

    Article  Google Scholar 

  11. Breckon, T.P., Barnes, S.E., Eichner, M.L., Wahren, K.: Autonomous real-time vehicle detection from a medium-level UAV. In: Proceedings of the 24th International Conference on Unmanned Air Vehicle Systems, p. 29:1–29:9 (2009)

    Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

    Book  MATH  Google Scholar 

  13. Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32

    Chapter  Google Scholar 

  14. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. VISApp (1) 2(331–340), 2 (2009)

    Google Scholar 

  15. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 6, 681–685 (2001)

    Article  Google Scholar 

  17. Laboratory of Perception Action and Cognition of the Penn State Univesity: vivid video dataset and tracker testbed program (2005). http://vision.cse.psu.edu/data/vividEval/

  18. Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS), January 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Cicala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tufano, F., Angelino, C.V., Cicala, L. (2016). Visual Target Detection and Tracking in UAV EO/IR Videos by Moving Background Subtraction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2016. Lecture Notes in Computer Science(), vol 10016. Springer, Cham. https://doi.org/10.1007/978-3-319-48680-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48680-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48679-6

  • Online ISBN: 978-3-319-48680-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics