Abstract
Sentiment analysis has grown to become increasingly important for companies to more accurately understand customer/supplier sentiments about their processes/products and services, and predict customer churn. In particular, existing sentiment analysis aims to better understand their customer’s or supplier’s emotions which are essentially the affirmative, negative, and neutral views of users on tangible or intangible entities e.g., products or services. One of the most prevalent sources to analyse these sentiments is Twitter. Unfortunately, however, existing sentiment analysis techniques suffer from three serious shortcomings: (1) they have problems to effectively deal with streaming data as they can merely exploit (Twitter) hashtags, and (2) neglect the context of Tweets. In this paper, we present SANA: a context-aware solution for dealing with streaming (Twitter) data, analysing this data on the fly taking into account context and more comprehensive semantics of Tweets, and dynamically monitoring and visualising trends in sentiments through dashboarding and query facilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apoorva, G., Vaishnav, N.R., Chowdary, E.D., Uddagiri, C.: An approach to sentiment analysis in Twitter using expert tweets and retweeting hierarchy. In: 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, pp. 1–8 (2016). doi:10.1109/MicroCom.2016.7522482
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics, June 2011
Chong, W.Y., Selvaretnam, B., Soon, L.K.: Natural language processing for sentiment analysis: an exploratory analysis on Tweets. In: 2014 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology (ICAIET), Kota Kinabalu, pp. 212–217 (2014)
Devi, N.V.D., Kumar, K.C., Prasad, S.: A feature based approach for sentiment analysis by using support vector machine. In: 2016 IEEE 6th International Conference on Advanced Computing (IACC), Bhimavaram, 201, pp. 3–8 (2016). doi:10.1109/IACC.2016.11
Ekinci, M., Ozcan, M.S., Amasyal, M.F. : Time effect in sentiment analysis. In: 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, pp. 209–212 (2016). doi:10.1109/SIU.2016.7495714
Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 363–370
Furini, M., Montangero, M.: TSentiment: on gamifying Twitter sentiment analysis. In: 2016 IEEE Symposium on Computers and Communication (ISCC), Messina, Italy, pp. 91–96 (2016). doi:10.1109/ISCC.2016.7543720
Gao, F., Sun, X., Wang, K., Ren, F.: Chinese micro-blog sentiment analysis based on semantic features and PAD model. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, pp. 1–5 (2016). doi:10.1109/ICIS.2016.7550903
Kumari, N., Singh, N.S.: Sentiment analysis on E-commerce application by using opinion mining. In: 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), Noida, pp. 320–325 (2016). doi:10.1109/CONFLUENCE.2016.7508136
Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language processing. In: Proceedings of the 2nd International Conference on Knowledge Capture, pp. 70–77. ACM, October 2003
Neethum M.S., Rajasree, R.: Sentiment analysis in twitter using machine learning techniques. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, pp. 1–5 (2013)
Qaisi, M.L., Aljarah, I.: A twitter sentiment analysis for cloud providers: a case study of Azure vs. AWS. In: 7th International Conference on Computer Science and Information Technology (CSIT), Amman, Jordan, pp. 1–6 (2016). doi:10.1109/CSIT.2016.7549473
Raja, D.R.K., Pushpa, S., Naveen Kumar, B.S.: Multidimensional distributed opinion extraction for sentiment analysis - a novel approach. In: 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, pp. 35–39 (2016). doi:10.1109/AEEICB.2016.7538333
Schtze, H.: Introduction to information retrieval. In: Proceedings of the International Communication of Association for Computing Machinery Conference, July 2008
Martin, J.H., Jurafsky, D.: Speech and language processing. International Edition 710 (2000)
Tripathi, P., Vishwakarma, K.S., Lala, A.: Sentiment analysis of english tweets using rapid miner. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN), Jabalpur, India, pp. 668–672 (2015). doi:10.1109/CICN.2015.137
Yang, T., Li, Y., Pan, Q., Guo, L.: Tb-CNN: joint tree-bank information for sentiment analysis using CNN. In: 2016 35th Chinese Control Conference (CCC), Chengdu, China, pp. 7042–7044 (2016). doi:10.1109/ChiCC.2016.7554468
Yuan, S., Wu, J., Wang, L., Wang, Q.: A hybrid method for multi-class sentiment analysis of micro-blogs. In: 2016 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, pp. 1–6 (2016). doi:10.1109/ICSSSM.2016.7538628
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Taher, Y., Haque, R., AlShaer, M., van den Heuvel, W.J., Hacid, MS., Dbouk, M. (2016). A Context-Aware Analytics for Processing Tweets and Analysing Sentiment in Realtime (Short Paper). In: Debruyne, C., et al. On the Move to Meaningful Internet Systems: OTM 2016 Conferences. OTM 2016. Lecture Notes in Computer Science(), vol 10033. Springer, Cham. https://doi.org/10.1007/978-3-319-48472-3_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-48472-3_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48471-6
Online ISBN: 978-3-319-48472-3
eBook Packages: Computer ScienceComputer Science (R0)