iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-47096-2_5
Inferring Users’ Critiquing Feedback on Recommendations from Eye Movements | SpringerLink
Skip to main content

Inferring Users’ Critiquing Feedback on Recommendations from Eye Movements

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9969))

Included in the following conference series:

  • 1111 Accesses

Abstract

In recommender systems, critiquing has been popularly applied as an effective approach to obtaining users’ feedback on recommended products. In order to reduce users’ efforts of creating critiquing criteria on their own, some systems have aimed at suggesting critiques for users to choose. How to accurately match system-suggested critiques to users’ intended feedback hence becomes a challenging issue. In this paper, we particularly take into account users’ eye movements on recommendations to infer their critiquing feedback. Based on a collection of real users’ eye-gaze data, we have demonstrated the approach’s feasibility of implicitly deriving users’ critiquing criteria. It hence indicates a promising direction of using eye-tracking technique to improve existing critique suggestion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(P(h|e)=N(h \wedge e)/N(e)\), where N() denotes the number of observations within all compound critiques.

  2. 2.

    \(H@K=\sum \nolimits _{c \in C} \frac{1_{rank(p_c)\le K}}{|C|}\) and \(MRR=\sum \nolimits _{c \in C} \frac{1}{rank(p_c)}\), where \(rank(p_c)\) denotes the rank of critiqued product \(p_c\) (in cycle c) within the top-K viewed products as sorted by a certain fixation metric.

  3. 3.

    We use FC-p, TFD-p, and AFD-p to respectively denote the measures of fixation count, total fixation duration, and average fixation duration at product level.

  4. 4.

    FC-a, TFD-a, and AFD-a respectively denote the measures of fixation count, total fixation duration, and average fixation duration at attribute level.

  5. 5.

    \(Precision=\sum \nolimits _{k \in AC} \frac{|Pred(k)\cap R(k)|}{|Pred(k)|}/|AC|\), \(Recall=\sum \nolimits _{k \in AC} \frac{|Pred(k)\cap R(k)|}{|R(k)|}/|AC|\), \(F1=\sum \nolimits _{k \in AC} \frac{2 \times Precision(k) \times Recall(k)}{Precision(k)+Recall(k)}/|AC|\), and \(HitRaito=\frac{\sum \nolimits _{k \in AC} |Pred(k)\cap R(k)|}{q}\), where AC denotes the set of three critique options {“keep”, “improve”, “compromise”}, Pred(k) denotes the set of attributes that are inferred with critique k, R(k) contains attributes that are actually critiqued with k, and q is the total number of attribute critiques (that is 380 in our data).

  6. 6.

    \(Lift(X \Rightarrow Y)=\frac{supp(X \cup Y)}{supp(X) \times supp(Y)}\), \(Confidence(X \Rightarrow Y)=\frac{supp(X \cup Y)}{supp(X)}\), where supp(X) gives the proportion of transactions that contain X.

  7. 7.

    We set 0.5 as Confidence threshold, as it indicates a high probability that at least half of transactions contain the antecedent leading to the consequence.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD 1993, pp. 207–216. ACM, New York (1993)

    Google Scholar 

  2. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)

    Article  Google Scholar 

  3. Burke, R.D., Hammond, K.J., Young, B.: The findme approach to assisted browsing. IEEE Expert Intell. Syst. Appl. 12(4), 32–40 (1997)

    Google Scholar 

  4. Castagnos, S., Jones, N., Pu, P.: Eye-tracking product recommenders’ usage. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 29–36. ACM, New York (2010)

    Google Scholar 

  5. Chen, L., Pu, P.: Evaluating critiquing-based recommender agents. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006, vol. 1, pp. 157–162. AAAI Press (2006)

    Google Scholar 

  6. Chen, L., Pu, P.: Hybrid critiquing-based recommender systems. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, IUI 2007, pp. 22–31. ACM (2007)

    Google Scholar 

  7. Chen, L., Pu, P.: Interaction design guidelines on critiquing-based recommender systems. User Model. User-Adap. Inter. 19(3), 167–206 (2009)

    Article  Google Scholar 

  8. Chen, L., Pu, P.: Experiments on the preference-based organization interface in recommender systems. ACM Trans. Comput. Hum. Inter. 17(1), 1–33 (2010)

    Google Scholar 

  9. Chen, L., Pu, P.: Eye-tracking study of user behavior in recommender interfaces. In: Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 375–380. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13470-8_35

    Chapter  Google Scholar 

  10. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User-Adap. Inter. 22(1–2), 125–150 (2012)

    Article  Google Scholar 

  11. Cheng, S., Liu, X., Yan, P., Zhou, J., Sun, S.: Adaptive user interface of product recommendation based on eye-tracking. In: Proceedings of the 2010 Workshop on Eye Gaze in Intelligent Human Machine Interaction, EGIHMI 2010, pp. 94–101. ACM, New York (2010)

    Google Scholar 

  12. Ehmke, C., Wilson, S.: Identifying web usability problems from eye-tracking data. In: Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI..But Not As We Know It, BCS-HCI 2007, vol. 1, pp. 119–128. British Computer Society, Swinton (2007)

    Google Scholar 

  13. Giordano, D., Kavasidis, I., Pino, C., Spampinato, C.: Content based recommender system by using eye gaze data. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2012, pp. 369–372. ACM, New York (2012)

    Google Scholar 

  14. Grasch, P., Felfernig, A., Reinfrank, F.: Recomment: towards critiquing-based recommendation with speech interaction. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 157–164. ACM, New York (2013)

    Google Scholar 

  15. Jung, J., Matsuba, Y., Mallipeddi, R., Funaya, H., Ikeda, K., Lee, M.: Evolutionary programming based recommendation system for online shopping. In: Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2013 Asia-Pacific, pp. 1–4, October 2013

    Google Scholar 

  16. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: the automated travel assistant. In: Jameson, A., Paris, C., Tasso, C. (eds.) UM 1997. ICMS, vol. 383, pp. 67–78. Springer, Heidelberg (1997). doi:10.1007/978-3-7091-2670-7_9

    Chapter  Google Scholar 

  17. Mahmood, T., Mujtaba, G., Venturini, A.: Dynamic personalization in conversational recommender systems. IseB 12(2), 213–238 (2014)

    Article  Google Scholar 

  18. McCarthy, K., McGinty, L., Smyth, B., Reilly, J.: A live-user evaluation of incremental dynamic critiquing. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 339–352. Springer, Heidelberg (2005). doi:10.1007/11536406_27

    Chapter  Google Scholar 

  19. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic critiquing. In: Proceedings of the 10th International Conference on Intelligent User Interfaces, IUI 2005, pp. 175–182. ACM (2005)

    Google Scholar 

  20. McCarthy, K., Salem, Y., Smyth, B.: Experience-based critiquing: reusing critiquing experiences to improve conversational recommendation. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS (LNAI), vol. 6176, pp. 480–494. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14274-1_35

    Chapter  Google Scholar 

  21. Poole, A., Ball, L.J.: Eye tracking in human-computer interaction and usability research: current status and future prospects. In: Ghaoui, C. (ed.) Encyclopedia of Human-Computer Interaction. Idea Group Inc., Pennsylvania (2005)

    Google Scholar 

  22. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28631-8_55

    Chapter  Google Scholar 

  23. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, ETRA 2000, pp. 71–78. ACM, New York (2000)

    Google Scholar 

  24. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 32–41. ACM (2002)

    Google Scholar 

  25. Tullis, T., Albert, W.: Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics. Morgan Kaufmann Publishers Inc., San Francisco (2008)

    Google Scholar 

  26. Xie, H., Chen, L., Wang, F.: Collaborative compound critiquing. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 254–265. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08786-3_22

    Google Scholar 

  27. Xu, S., Jiang, H., Lau, F.C.: Personalized online document, image and video recommendation via commodity eye-tracking. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, pp. 83–90. ACM, New York (2008)

    Google Scholar 

  28. Zhang, J., Pu, P.: A comparative study of compound critique generation in conversational recommender systems. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 234–243. Springer, Heidelberg (2006). doi:10.1007/11768012_25

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank participants who took part in our experiment. We thank Dr. Weike Pan and Ms. Wai Yee Wong for assisting in data processing and analysis. We also thank Hong Kong RGC and China NSFC for sponsoring the described research work (under projects RGC/HKBU12200415 and NSFC/61272365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Chen, L., Wang, F., Wu, W. (2016). Inferring Users’ Critiquing Feedback on Recommendations from Eye Movements. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47096-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47095-5

  • Online ISBN: 978-3-319-47096-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics