Abstract
Relevance matrices are a way to formalize the contribution of each attribute in a classification task. Within the CBR paradigm these matrices can be used to improve the global similarity function that outputs the similarity degree of two cases, which helps facilitate retrieval. In this work a sensitivity analysis method was developed to optimize the relevance values of each attribute of a case in a CBR environment, thus allowing an improved comparison of cases. The process begins with a statistical analysis of the values in a given dataset, and continues with an incremental update of the relevance of each attribute.
The method was tested on two datasets and it was shown that the statistical analysis performs better than evenly distributed relevance values, making it a suitable initial setting for the incremental update, and that updating the values over time gives better results than the statistical analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)
Aha, D. W. Case-based learning algorithms. In: Proceedings of the 1991 DARPA Case-Based Reasoning Workshop, vol. 1, pp. 147–158 (1991)
Bach, K., Sauer, C. S., Althoff, K. D., Roth-Berghofer, T.: Knowledge modeling with the open source tool myCBR. In: KESE@ ECAI (2014)
Bohanec, M., Rajkovic, V.: Knowledge acquisition and explanation for multi-attribute decision making. In: 8th Intl Workshop on Expert Systems and their Applications, pp. 59-78 (1988)
Horton, P., Nakai, K.: A probabilistic classification system for predicting the cellular localization sites of proteins. In: Ismb, vol. 4, pp. 109–115 (1996)
Reuss, P., Althoff, K.-D., Henkel, W., Pfeiffer, M., Hankel, O., Pick, R.: Semi-automatic knowledge extraction from semi-structured and unstructured data within the OMAHA project. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 336–350. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24586-7_23
Richter, M.M., Wess, S.: Similarity, uncertainty and case-based reasoning in PATDEX. In: Automated Reasoning, pp. 249-265. Springer, Heidelberg (1991)
Richter, M.M.: Classification and learning of similarity measures. In: Information and Classification, pp. 323–334. Springer, Heidelberg (1993)
Stahl, A.: Learning feature weights from case order feedback. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 502–516. Springer, Heidelberg (2001). doi:10.1007/3-540-44593-5_35
Wess, S.: Fallbasiertes problemlösen in wissensbasierten systemen zur entscheidungsunterstützung und diagnostik. Ph.D thesis. TU Kaiserslautern (1995)
Wettschereck, D., Aha, D.W.: Weighting features. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995). doi:10.1007/3-540-60598-3_31
Zhang, Z., Yang, Q.: Towards lifetime maintenance of case base indexes for continual case based reasoning. In: Giunchiglia, F. (ed.) Artificial Intelligence: Methodology, Systems, and Applications. LNCS, vol. 1480, pp. 489–500. Springer, Heidelberg (1998)
Zhang, Z., Yang, Q. Dynamic refinement of feature weights using quantitative introspective learning. In: IJCAI, pp. 228–233 (1999)
German Aerospace Center - DLR, LuFo-Projekt OMAHA gestartet, http://www.dlr.de/lk/desktopdefault.aspx/tabid-4472/15942_read-45359/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Stram, R., Reuss, P., Althoff, KD., Henkel, W., Fischer, D. (2016). Relevance Matrix Generation Using Sensitivity Analysis in a Case-Based Reasoning Environment. In: Goel, A., DÃaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-47096-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47095-5
Online ISBN: 978-3-319-47096-2
eBook Packages: Computer ScienceComputer Science (R0)