iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-47096-2_27
Relevance Matrix Generation Using Sensitivity Analysis in a Case-Based Reasoning Environment | SpringerLink
Skip to main content

Relevance Matrix Generation Using Sensitivity Analysis in a Case-Based Reasoning Environment

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9969))

Included in the following conference series:

Abstract

Relevance matrices are a way to formalize the contribution of each attribute in a classification task. Within the CBR paradigm these matrices can be used to improve the global similarity function that outputs the similarity degree of two cases, which helps facilitate retrieval. In this work a sensitivity analysis method was developed to optimize the relevance values of each attribute of a case in a CBR environment, thus allowing an improved comparison of cases. The process begins with a statistical analysis of the values in a given dataset, and continues with an incremental update of the relevance of each attribute.

The method was tested on two datasets and it was shown that the statistical analysis performs better than evenly distributed relevance values, making it a suitable initial setting for the incremental update, and that updating the values over time gives better results than the statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://archive.ics.uci.edu/ml.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Google Scholar 

  2. Aha, D. W. Case-based learning algorithms. In: Proceedings of the 1991 DARPA Case-Based Reasoning Workshop, vol. 1, pp. 147–158 (1991)

    Google Scholar 

  3. Bach, K., Sauer, C. S., Althoff, K. D., Roth-Berghofer, T.: Knowledge modeling with the open source tool myCBR. In: KESE@ ECAI (2014)

    Google Scholar 

  4. Bohanec, M., Rajkovic, V.: Knowledge acquisition and explanation for multi-attribute decision making. In: 8th Intl Workshop on Expert Systems and their Applications, pp. 59-78 (1988)

    Google Scholar 

  5. Horton, P., Nakai, K.: A probabilistic classification system for predicting the cellular localization sites of proteins. In: Ismb, vol. 4, pp. 109–115 (1996)

    Google Scholar 

  6. Reuss, P., Althoff, K.-D., Henkel, W., Pfeiffer, M., Hankel, O., Pick, R.: Semi-automatic knowledge extraction from semi-structured and unstructured data within the OMAHA project. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 336–350. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24586-7_23

    Chapter  Google Scholar 

  7. Richter, M.M., Wess, S.: Similarity, uncertainty and case-based reasoning in PATDEX. In: Automated Reasoning, pp. 249-265. Springer, Heidelberg (1991)

    Google Scholar 

  8. Richter, M.M.: Classification and learning of similarity measures. In: Information and Classification, pp. 323–334. Springer, Heidelberg (1993)

    Google Scholar 

  9. Stahl, A.: Learning feature weights from case order feedback. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 502–516. Springer, Heidelberg (2001). doi:10.1007/3-540-44593-5_35

    Chapter  Google Scholar 

  10. Wess, S.: Fallbasiertes problemlösen in wissensbasierten systemen zur entscheidungsunterstützung und diagnostik. Ph.D thesis. TU Kaiserslautern (1995)

    Google Scholar 

  11. Wettschereck, D., Aha, D.W.: Weighting features. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995). doi:10.1007/3-540-60598-3_31

    Chapter  Google Scholar 

  12. Zhang, Z., Yang, Q.: Towards lifetime maintenance of case base indexes for continual case based reasoning. In: Giunchiglia, F. (ed.) Artificial Intelligence: Methodology, Systems, and Applications. LNCS, vol. 1480, pp. 489–500. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Zhang, Z., Yang, Q. Dynamic refinement of feature weights using quantitative introspective learning. In: IJCAI, pp. 228–233 (1999)

    Google Scholar 

  14. German Aerospace Center - DLR, LuFo-Projekt OMAHA gestartet, http://www.dlr.de/lk/desktopdefault.aspx/tabid-4472/15942_read-45359/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rotem Stram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Stram, R., Reuss, P., Althoff, KD., Henkel, W., Fischer, D. (2016). Relevance Matrix Generation Using Sensitivity Analysis in a Case-Based Reasoning Environment. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47096-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47095-5

  • Online ISBN: 978-3-319-47096-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics