iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-46771-9_37
Visualization of Ranking Authors Based on Social Networks Analysis and Bibliometrics | SpringerLink
Skip to main content

Visualization of Ranking Authors Based on Social Networks Analysis and Bibliometrics

  • Conference paper
  • First Online:
Cooperative Design, Visualization, and Engineering (CDVE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9929))

  • 1519 Accesses

Abstract

It is interesting to rank scientists in a specific field, which would help researchers to know about the research status of the field and gain valuable insight on future technical trends in the field. Our paper visualizes the results of author ranking with the consideration of authors’ contribution. In this paper, every author’s contribution to his/her field is calculated according to the co-authorship among papers. By extracting the papers and authors information from a field since they started publication, the co-author network are constructed. We also get the clusters partition of those authors by Girvan-Newman algorithm. For conducting detailed experiments to show the visualized our results, we select the field of Intelligent transportation system (ITS) as an example. Since thousands of papers were published by scientists each year in the ITS field, academic co-authorship in this field expands fast. We design our dataset composed by data from four journals in the ITS field to visualize our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulhai, B., Porwal, H., Recker, W.: Short-term traffic flow prediction using neuro-genetic algorithms. ITS J. Intell. Transp. Syst. J. 7(1), 3–41 (2002)

    MATH  Google Scholar 

  2. Ahn, K., Rakha, H., Trani, A., Van Aerde, M.: Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J. Transp. Eng. 128(2), 182–190 (2002)

    Article  Google Scholar 

  3. Bandeira, J., Almeida, T.G., Khattak, A.J., Rouphail, N.M., Coelho, M.C.: Generating emissions information for route selection: experimental monitoring and routes characterization. J. Intell. Transp. Syst. 17(1), 3–17 (2013)

    Article  Google Scholar 

  4. Borgatti, S.P., Everett, M.G., Freeman, L.C.: Ucinet for Windows: Software for Social Network Analysis. Analytic Technologies, Harvard (2002)

    Google Scholar 

  5. Chang, G.L., Park, S., Paracha, J.: Intelligent transportation system field demonstration: integration of variable speed limit control and travel time estimation for a recurrently congested highway. Transp. Res. Rec. J. Transp. Res. Board 2243, 55–66 (2011)

    Article  Google Scholar 

  6. Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with google’s pagerank algorithm. J. Informetrics 1(1), 8–15 (2007)

    Article  Google Scholar 

  7. Cocron, P., Buhler, F., Neumann, I., Franke, T., Krems, J.F., Schwalm, M., Keinath, A.: Methods of evaluating electric vehicles from a user’s perspective-the mini e field trial in Berlin. IET Intell. Transp. Syst. 5(2), 127–133 (2011)

    Article  Google Scholar 

  8. Institution of Electrical and Electronics Engineers; IEEE Intelligent Transportation Systems Council: IEEE transactions on intelligent transportation systems. IEEE (2015)

    Google Scholar 

  9. Ding, Y., Yan, E., Frazho, A., Caverlee, J.: Pagerank for ranking authors in co-citation networks. J. Am. Soc. Inf. Sci. Technol. 60(11), 2229–2243 (2009)

    Article  Google Scholar 

  10. Fang, Y., Chu, F., Mammar, S., Zhou, M.: Optimal lane reservation in transportation network. IEEE Trans. Intell. Transp. Syst. 13(2), 482–491 (2012)

    Article  Google Scholar 

  11. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Taylor & Francis Group: Journal of Intelligent Transportation Systems. Taylor & Francis Group (2015)

    Google Scholar 

  13. Huang, W., Wen, D., Geng, J., Zheng, N.N.: Task-specific performance evaluation of UGVs: case studies at the IVFC. IEEE Trans. Intell. Transp. Syst. 15(5), 1969–1979 (2014)

    Article  Google Scholar 

  14. Kaufman, D.E., Smith, R.L.: Fastest paths in time-dependent networks for intelligent vehicle-highway systems application. J. Intell. Transp. Syst. 1(1), 1–11 (1993)

    Google Scholar 

  15. Li, Z., Wang, W., Chen, R., Liu, P.: Conditional inference tree-based analysis of hazardous traffic conditions for rear-end and sideswipe collisions with implications for control strategies on freeways. IET Intell. Transp. Syst. 8(6), 509–518 (2014)

    Article  MathSciNet  Google Scholar 

  16. IET Digital Library: IET Intelligent Transportation Systems (2015)

    Google Scholar 

  17. Lin, C.F., Ulsoy, A.G.: Time to lane crossing calculation and characterization of its associated uncertainty. J. Intell. Transp. Syst. 3(2), 85–98 (1996)

    Google Scholar 

  18. List, G.F., Cetin, M.: Modeling traffic signal control using petri nets. IEEE Trans. Intell. Transp. Syst. 5(3), 177–187 (2004)

    Article  Google Scholar 

  19. Liu, P., Lu, J.J., Zhou, H., Sokolow, G.: Operational effects of u-turns as alternatives to direct left-turns. J. Transp. Eng. 133(5), 327–334 (2007)

    Article  Google Scholar 

  20. Mane, K.K., Börner, K.: Mapping topics and topic bursts in PNAS. Proc. Natl. Acad. Sci. 101(suppl 1), 5287–5290 (2004)

    Article  Google Scholar 

  21. Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98(2), 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qinghua, Z., Liang, L.: Social network analysis method & its application in information science. Inf. Stud. Theory Appl. 2, 179–183 (2008)

    Google Scholar 

  23. Ran, B., Jin, P.J., Boyce, D., Qiu, T.Z., Cheng, Y.: Perspectives on future transportation research: impact of intelligent transportation system technologies on next-generation transportation modeling. J. Intell. Transp. Syst. 16(4), 226–242 (2012)

    Article  Google Scholar 

  24. Ros, B.G., Knoop, V.L., Van Arem, B., Hoogendoorn, S.P.: Empirical analysis of the causes of stop-and-go waves at sags. IET Intell. Transp. Syst. 8(5), 499–506 (2014)

    Article  Google Scholar 

  25. Sivaraman, S., Trivedi, M.M.: Dynamic probabilistic drivability maps for lane change and merge driver assistance. IEEE Trans. Intell. Transp. Syst. 15(5), 2063–2073 (2014)

    Article  Google Scholar 

  26. Skabardonis, A., Geroliminis, N.: Real-time monitoring and control on signalized arterials. J. Intell. Transp. Syst. 12(2), 64–74 (2008)

    Article  Google Scholar 

  27. de Solla Price, D.J.: Networks of scientific papers. Science 149(3683), 510–515 (1965)

    Article  Google Scholar 

  28. Wang, S., Xie, S., Zhang, X., Li, Z., Philip, S.Y., Shu, X.: Future influence ranking of scientific literature. In: SDM, pp. 749–757. SIAM (2014)

    Google Scholar 

  29. Yang, Y., McDonald, M., Zheng, P.: Can drivers’ eye movements be used to monitor their performance? A case study. IET Intell. Transp. Syst. 6(4), 444–452 (2012)

    Article  Google Scholar 

  30. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grant 615020269, by the Natural Science Foundation of Liaoning under Grant 2015020003, by the Fundamental Research Funds for the Central Universities under Grant DUT15QY40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Xu, X., Zhang, R., Xu, Z., Ding, F., Zhao, X. (2016). Visualization of Ranking Authors Based on Social Networks Analysis and Bibliometrics. In: Luo, Y. (eds) Cooperative Design, Visualization, and Engineering. CDVE 2016. Lecture Notes in Computer Science(), vol 9929. Springer, Cham. https://doi.org/10.1007/978-3-319-46771-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46771-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46770-2

  • Online ISBN: 978-3-319-46771-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics