iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-46418-3_35
Airway Segmentation, Skeletonization, and Tree Matching to Improve Registration of 3D CT Images with Large Opacities in the Lungs | SpringerLink
Skip to main content

Airway Segmentation, Skeletonization, and Tree Matching to Improve Registration of 3D CT Images with Large Opacities in the Lungs

  • Conference paper
  • First Online:
Computer Vision and Graphics (ICCVG 2016)

Abstract

In this work, we address the registration of pulmonary images, representing the same subject, with large opaque regions within the lungs, and with possibly large displacements. We propose a hybrid method combining alignment based on gray levels and landmarks within the same cost function. The landmarks are nodes of the airway tree obtained by specially developed segmentation and skeletonization algorithms. The former uses the random walker approach, whereas the latter exploits the minimum spanning tree constructed by the Dijkstra’s algorithm, in order to detect end-points and bifurcations. Airway trees from different images are matched by a modified best-first-search algorithm with a specially designed distance function. The proposed method was evaluated on computed-tomography images of subjects with acute respiratory distress syndrome, acquired at significantly different mechanical ventilation conditions. It achieved better results than registration based only on gray levels, but also better than hybrid registration using a standard airway-segmentation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.lola11.com/ - let us note that the focus of the challenge was lung segmentation, but many participating methods were based on atlas registration.

  2. 2.

    http://fiji.sc/AnalyzeSkeleton.

References

  1. Cao, K., Ding, K., et al.: Improving intensity-based lung CT registration accuracy utilizing vascular information. Int. J. Biomed. Imaging 2012, 17 (2012). doi:10.1155/2012/285136. Article ID 285136

    Google Scholar 

  2. Delmon, V., Rit, S., et al.: Registration of sliding objects using direction dependent B-splines decomposition. Phys. Med. Biol. 8(5), 1303–1314 (2013)

    Article  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fabijanska, A.: Segmentation of pulmonary vascular tree from 3D CT thorax scans. Biocybern. Biomed. Eng. 35(2), 106–119 (2015)

    Article  MathSciNet  Google Scholar 

  5. Feragen, A., Petersen, J., Owen, M., Lo, P., Hohwü Thomsen, L., et al.: Geodesic atlas-based labeling of anatomical trees: Application and evaluation on airways extracted from CT. IEEE Trans. Med. Imaging 34, 1212–1226 (2015)

    Article  Google Scholar 

  6. Flórez-Valencia, L., Morales Pinzón, A., et al.: Simultaneous skeletonization and graph description of airway trees in 3D CT images. In: Proceedings of the 25th GRETSI (2015)

    Google Scholar 

  7. Frangi, A.F., Niessen, W.J., et al.: Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Trans. Med. Imaging 18(10), 946–956 (1999)

    Article  Google Scholar 

  8. Graham, M.W., Higgins, W.E.: Optimal graph-theoretic approach to 3D anatomical tree matching. In: Proceedings of the 3rd ISBI, pp. 109–112 (2006)

    Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010)

    Article  Google Scholar 

  11. Lo, P., van Ginneken, B., Reinhardt, J.M., Tarunashree, Y., et al.: Extraction of airways from CT (EXACT 2009). IEEE Trans. Med. Imaging. 31, 2093–2107 (2012)

    Article  Google Scholar 

  12. Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 265–270 (2003)

    Article  Google Scholar 

  13. Metzen, J.H., Kröger, T., Schenk, A., et al.: Matching of anatomical tree structures for registration of medical images. Image Vis. Comput. 27, 923–933 (2009)

    Article  Google Scholar 

  14. Mori, K., Hasegawa, J., Toriwaki, J., Anno, H., Katada, K.: Recognition of bronchus in three-dimensional X-ray CT images with applications to virtualized bronchoscopy system. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 3, pp. 528–532 (1996)

    Google Scholar 

  15. Murphy, K., van Ginneken, B., Reinhardt, J.M., Kabus, S., Ding, K., Deng, X., et al.: Evaluation of registration methods on thoracic CT the EMPIRE10 challenge. IEEE Trans. Med. Imaging 30(11), 1901–1920 (2011)

    Article  Google Scholar 

  16. Polzin, T., Rühaak, J., Werner, R., Strehlow, J., Heldmann, S., et al.: Combining automatic landmark detection and variational methods for Lung CT registration. In: Proceedings of the MICCAI 5th International Workshop on Pulmonary Image Analysis, pp. 85–96 (2013)

    Google Scholar 

  17. Pu, J., Gu, S., Liu, S., Zhu, S., Wilson, D., et al.: CT based computerized identification and analysis of human airways: a review. Med. Phys. 39, 2603–2616 (2012)

    Article  Google Scholar 

  18. Saha, P.K., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)

    Article  Google Scholar 

  19. van Rikxoort, E.M., van Ginneken, B.: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review. Phys. Med. Biol. 58, 187–220 (2013)

    Article  Google Scholar 

  20. Tschirren, J., Mclennan, G., Palagyi, K., et al.: Matching and anatomical labeling of human airway tree. IEEE Trans. Med. Imaging 24, 1540–1547 (2005)

    Article  Google Scholar 

  21. Verscheure, L., Peyrodie, L., Dewalle, A.S., Reyns, N., Betrouni, N., et al.: Three-dimensional skeletonization and symbolic description in vascular imaging: preliminary results. Int. J. Comput. Assist. Radiol. Surg. 8(2), 233–246 (2013)

    Article  Google Scholar 

  22. Yin, Y., Hoffman, E.A., Ding, K., Reinhardt, J.M., Lin, C.-L.: A cubic B-spline-based hybrid registration of lung CT images for a dynamic airway geometric model with large deformation. Phys. Med. Biol. 56, 203–218 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Colciencias for doctoral scholarships granted to D. Gómez Betancur and A. Morales Pinzón, and also for its support through the French-Colombian ECOS-NORD program C15M04 grant. This work was also supported by the French-Polish PHC Polonium 34852WG grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Orkisz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gómez Betancur, D.A. et al. (2016). Airway Segmentation, Skeletonization, and Tree Matching to Improve Registration of 3D CT Images with Large Opacities in the Lungs. In: Chmielewski, L., Datta, A., Kozera, R., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2016. Lecture Notes in Computer Science(), vol 9972. Springer, Cham. https://doi.org/10.1007/978-3-319-46418-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46418-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46417-6

  • Online ISBN: 978-3-319-46418-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics