iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-44543-4_19
Upper Domination: Complexity and Approximation | SpringerLink
Skip to main content

Upper Domination: Complexity and Approximation

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2016)

Abstract

We consider Upper Domination, the problem of finding a maximum cardinality minimal dominating set in a graph. We show that this problem does not admit an \(n^{1-\epsilon }\) approximation for any \(\epsilon >0\), making it significantly harder than Dominating Set, while it remains hard even on severely restricted special cases, such as cubic graphs (APX-hard), and planar subcubic graphs (NP-hard). We complement our negative results by showing that the problem admits an \(O(\varDelta )\) approximation on graphs of maximum degree \(\varDelta \), as well as an EPTAS on planar graphs. Along the way, we also derive essentially tight \(n^{1-\frac{1}{d}}\) upper and lower bounds on the approximability of the related problem Maximum Minimal Hitting Set on d-uniform hypergraphs, generalising known results for Maximum Minimal Vertex Cover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AbouEisha, H., Hussain, S., Lozin, V., Monnot, J., Ries, B.: A dichotomy for upper domination in monogenic classes. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 258–267. Springer, Heidelberg (2014)

    Google Scholar 

  2. Arkin, E.M., Bender, M.A., Mitchell, J.S.B., Skiena, S.: The lazy bureaucrat scheduling problem. Inf. Comput. 184(1), 129–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, B.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bender, M.A., Clifford, R., Tsichlas, K.: Scheduling algorithms for procrastinators. J. Sched. 11(2), 95–104 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berman, P., Fujito, T.: On the approximation properties of independent set problem in degree 3 graphs. In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 449–460. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209, 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boria, N., Della Croce, F.D., Paschos, V.T.: On the max min vertex cover Problem. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 37–48. Springer, Heidelberg (2014)

    Google Scholar 

  8. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive boolean functions. Optim. Methods Softw. 10(2), 147–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgeois, N., Escoffier, B., Paschos, V.T.: Fast algorithms for min independent dominating set. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 247–261. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Bourgeois, N., Croce, F.D., Escoffier, B., Paschos, V.T.: Fast algorithms for min independent dominating set. Discrete Appl. Math. 161(4–5), 558–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheston, G., Fricke, G., Hedetniemi, S., Jacobs, D.: On the computational complexity of upper fractional domination. Discrete Appl. Math. 27(3), 195–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockayne, E.J., Favaron, O., Payan, C., Thomason, A.G.: Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math. 33(3), 249–258 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Courcelle, B., Makowsky, A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theo. Comp. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halldórsson, M.M.: Approximating the minimum maximal independence number. Inf. Process. Lett. 46(4), 169–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hare, E.O., Hedetniemi, S.T., Laskar, R.C., Peters, K., Wimer, T.: Linear-time computability of combinatorial problems on generalized-series-parallel graphs. In: Johnson, D.S., et al. (eds.) Discrete Algorithms and Complexity (AP NY) (1987)

    Google Scholar 

  16. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Monographs and Textbooks in Pure and Applied Mathematics, vol. 208. Marcel Dekker, New York (1998)

    MATH  Google Scholar 

  17. Henning, M.A., Slater, P.J.: Inequalities relating domination parameters in cubic graphs. Discrete Math. 158(1–3), 87–98 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Håstad, J.: Clique is hard to approximate within \(n^{1-\epsilon }\). Acta Math. 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  19. Hurink, J., Nieberg, T.: Approximating minimum independent dominating sets in wireless networks. Inf. Process. Lett. 109(2), 155–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacobson, M.S., Peters, K.: Chordal graphs and upper irredundance, upper domination and independence. Discrete Math. 86(1–3), 59–69 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanté, M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal dominating sets and related notions. SIAM J. Disc. Math. 28(4), 1916–1929 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  23. Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52, 233–252 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lovász, L.: Three short proofs in graph theory. J. Combin. Theory Ser. B 19, 269–271 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zehavi, M.: Maximum minimal vertex cover parameterized by vertex cover. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 589–600. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank anonymous referees for helpful comments. We also thank our colleagues David Manlove and Daniel Meister for discussions on upper domination. Part of this research was supported by the DFG, grant FE 560/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Bazgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bazgan, C. et al. (2016). Upper Domination: Complexity and Approximation. In: Mäkinen, V., Puglisi, S., Salmela, L. (eds) Combinatorial Algorithms. IWOCA 2016. Lecture Notes in Computer Science(), vol 9843. Springer, Cham. https://doi.org/10.1007/978-3-319-44543-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44543-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44542-7

  • Online ISBN: 978-3-319-44543-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics