Abstract
Providing sound and fault resilient signature schemes is of crucial importance for the realization of modern secure embedded systems. In this context, the use of standardized discrete logarithm signature primitives such as DSA and ECDSA has been proven frail with respect to failures in the RNG subsystem of a device, leading to the design of deterministic schemes. In this work we analyze the resistance of deterministic signature primitives to fault attacks. We devise an attack strategy relying on a relaxed fault model and show how to efficiently derive the secret key of the deterministic version of both DSA and ECDSA, employing a single correct-faulty signature pair, while we show that the EdDSA algorithm shows structural resistance against such attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G., Sanfilippo, S., Susella, R.: A fault-based secret key retrieval method for ECDSA: analysis and countermeasure. J. Emerg. Technol. Comput. Syst. 13(1) (2016)
Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Fault attack on AES with single-bit induced faults. In: Sixth International Conference on Information Assurance and Security, IAS 2010, Atlanta, GA, USA, 23–25 August 2010. IEEE (2010)
Barenghi, A., Bertoni, G.M., Breveglieri, L., Pelosi, G.: A fault induction technique based on voltage underfeeding with application to attacks against AES and RSA. J. Syst. Softw. 86(7), 1864–1878 (2013)
Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)
Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Countermeasures against fault attacks on software implemented AES: effectiveness and cost. In: 5th Workshop on Embedded Systems Security, WESS 2010. ACM (2010)
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed High-security Signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Vitek, J., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alternatives to random number generators. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999)
Pornin, T.: Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA). IETF RFC 6979 (2013)
Josefsson, S., Möller, N.: EdDSA and Ed25519 (2015). https://tools.ietf.org/html/draft-josefsson-eddsa-ed25519-03
Schmidt, J., Medwed, M.: A fault attack on ECDSA. In: FDTC 2009, pp. 93–99. IEEE CS (2009)
Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)
Acknowledgements
This work was supported in part by the EU grant awarded for the action “Safe Cooperating Cyber-Physical Systems using Wireless Communication – SafeCOP” (ECSEL JU 2015-RIA). Grant agreement no. 692529.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Barenghi, A., Pelosi, G. (2016). A Note on Fault Attacks Against Deterministic Signature Schemes (Short Paper). In: Ogawa, K., Yoshioka, K. (eds) Advances in Information and Computer Security. IWSEC 2016. Lecture Notes in Computer Science(), vol 9836. Springer, Cham. https://doi.org/10.1007/978-3-319-44524-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-44524-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44523-6
Online ISBN: 978-3-319-44524-3
eBook Packages: Computer ScienceComputer Science (R0)