iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-40648-0_21
Gray-Box Learning of Serial Compositions of Mealy Machines | SpringerLink
Skip to main content

Gray-Box Learning of Serial Compositions of Mealy Machines

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9690))

Included in the following conference series:

Abstract

We study the following gray-box learning problem: Given the serial composition of two Mealy machines A and B, where A is known and B is unknown, the goal is to learn a model of B using only output and equivalence queries on the composed machine.

We introduce an algorithm that solves this problem, using at most |B| equivalence queries, independently of the size of A. We discuss its efficient implementation and evaluate the algorithm on existing benchmark sets as well as randomly-generated machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The proofs for the theorems in this section are available at http://embedded.cs.uni-saarland.de/GrayBoxLearning/details.pdf.

References

  1. Abel, A., Reineke, J.: MeMin: SAT-based exact minimization of incompletely specified mealy machines. In: ICCAD 2015. IEEE Press (2015)

    Google Scholar 

  2. Angluin, D.: Learning regular sets from queries and counter examples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babic, D., Botincan, M., Song, D.: Symbolic grey-box learning of input-output relations. Technical Report UCB/EECS-2012-59. University of California, Berkeley (2012)

    Google Scholar 

  4. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Elkind, E., Genest, B., Peled, D.A., Qu, H.: Grey-box checking. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–435. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Grinchtein, O., Leucker, M.: Learning finite-state machines from inexperienced teachers. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 344–345. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 357–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Henkler, S., et al.: Legacy component integration by the Fujaba real-time tool suite. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE 2010, vol. 2. pp. 267–270. ACM, New York (2010)

    Google Scholar 

  10. Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 66–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Hsu, Y., Lee, D.: Machine learning for implanted malicious code detection with incompletely specified system implementations. In: IEEE International Conference on Network Protocols, Washington, DC, USA, pp. 31–36 (2011)

    Google Scholar 

  13. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  14. Lee, D.: Personal communication, January 2015

    Google Scholar 

  15. Leucker, M., Neider, D.: Learning minimal deterministic automata from inexperienced teachers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 524–538. Springer, Heidelberg (2012)

    Google Scholar 

  16. Maler, O., Mens, I.-E.: Learning regular languages over large alphabets. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 485–499. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  17. Pena, J., Oliveira, A.: A new algorithm for exact reduction of incompletely specified finite state machines. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 18(11), 1619–1632 (1999)

    Article  Google Scholar 

  18. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to verify omega-regular properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Abel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abel, A., Reineke, J. (2016). Gray-Box Learning of Serial Compositions of Mealy Machines. In: Rayadurgam, S., Tkachuk, O. (eds) NASA Formal Methods. NFM 2016. Lecture Notes in Computer Science(), vol 9690. Springer, Cham. https://doi.org/10.1007/978-3-319-40648-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40648-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40647-3

  • Online ISBN: 978-3-319-40648-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics