iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-40648-0_20
Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Reachability Analysis | SpringerLink
Skip to main content

Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Reachability Analysis

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9690))

Included in the following conference series:

Abstract

We investigate the use of bandwidth and wavefront reduction algorithms to determine a static BDD variable ordering. The aim is to reduce the size of BDDs arising in symbolic reachability. Previous work showed that minimizing the (weighted) event span of the variable dependency graph yields small BDDs. The bandwidth and wavefront of symmetric matrices are well studied metrics, used in sparse matrix solvers, and many bandwidth and wavefront reduction algorithms are readily available in libraries like Boost and ViennaCL.

In this paper, we transform the dependency matrix to a symmetric matrix and apply various bandwidth and wavefront reduction algorithms, measuring their influence on the (weighted) event span. We show that Sloan’s algorithm, executed on the total graph of the dependency matrix, yields a variable order with minimal event span. We demonstrate this on a large benchmark of Petri nets, Dve, Promela, B, and mcrl2 models. As a result, good static variable orders can now be determined in milliseconds by using standard sparse matrix solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We restrict ourselves to languages that induce a disjunctive transition relation.

  2. 2.

    Theorem 1 can be easily proven with the triangle inequality theorem.

  3. 3.

    Reproduction instructions at: https://github.com/utwente-fmt/BW-NFM2016

  4. 4.

    There are three side notes. First, \(\mu \) and \(\sigma \) for bandwidth, profile and wavefront are computed per graph type, because the bipartite and total graph have different sizes. Second, Noack1 and Noack2 can only be computed directly on Petri nets (PNML, Fig. 9e), so bandwidth, profile and wavefront are unknown. Third, when FORCE is executed or without reordering, bandwidth, profile and wavefront are not reported. The reason is that our symmetrization approach typically produces high values for those metrics. Event span does not have this problem.

References

  1. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: 13th ACM, VLSI, pp. 116–119. ACM (2003)

    Google Scholar 

  2. Blom, S., van de Pol, J.: Symbolic reachability for process algebras with recursive data types. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 81–95. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)

    Article  MATH  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)

    Article  MATH  Google Scholar 

  5. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition relations. In: VLSI 1991 (1991)

    Google Scholar 

  6. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for symbolic state-space exploration. STTT 8(1), 4–25 (2006)

    Article  Google Scholar 

  7. Ciardo, G., Miner, A.S., Wan, M.: Advanced features in SMART: the stochastic model checking analyzer for reliability and timing. SIGMETRICS PER 36(4), 58–63 (2009)

    Article  Google Scholar 

  8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wesselink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 199–213. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings 24th National Conference, pp. 157–172. ACM (1969)

    Google Scholar 

  11. Gibbs, N.E., Poole Jr., W.G., Stockmeyer, P.K.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Num. Anal. 13(2), 236–250 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grumberg, O., Livne, S., Markovitch, S.: Learning to order BDD variables in verification. JAIR 18, 83–116 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Heiner, M., Rohr, C., Schwarick, M.: MARCIE – model checking and reachability analysis done efficiently. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 389–399. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin: high-performance language-independent model checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015)

    Google Scholar 

  15. Karantasis, K.I., et al.: Parallelization of reordering algorithms for bandwidth and wavefront reduction. In: ICHPC 2014, pp. 921–932. IEEE (2014)

    Google Scholar 

  16. Kaveh, A.: Ordering for Optimal Patterns of Structural Matrices. Wiley, New York (2006). pp. 191–271

    Google Scholar 

  17. King, I.P.: An automatic reordering scheme for simultaneous equations derived from network systems. Int. J. Numer. Meth. Eng. 2(4), 523–533 (1970)

    Article  Google Scholar 

  18. Kordon, F., et al.: Complete Results for the 2015 Edition of the Model Checking Contest (2015). http://mcc.lip6.fr/2015/results.php

  19. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. STTT 10(2), 185–203 (2008)

    Article  Google Scholar 

  20. Mafteiu-Scai, L.O.: The bandwidths of a matrix. A survey of algorithms. Ann. West Univ. Timisoara-Math. 52(2), 183–223 (2014)

    MathSciNet  Google Scholar 

  21. Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy dependencies for symbolic model checking. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 204–219. Springer, Heidelberg (2014)

    Google Scholar 

  22. Noack, A.: A ZBDD package for efficient model checking of Petri nets. Forschungsbericht, Branderburgische Technische Uinversität Cottbus (1999)

    Google Scholar 

  23. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Reid, J.K., Scott, J.A.: Reducing the total bandwidth of a sparse unsymmetric matrix. SIAM J. Matrix Anal. Appl. 28(3), 805–821 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient BDD/MDD construction. Technical report, University of California (2008)

    Google Scholar 

  26. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: ICCAD1993. IEEE (1993)

    Google Scholar 

  27. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - a high level linear algebra library for GPUs and multi-core CPUs. In: GPUScA 2010, pp. 51–56 (2010)

    Google Scholar 

  28. Siminiceanu, R.I., Ciardo, G.: New metrics for static variable ordering in decision diagrams. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 90–104. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Sloan, S.W.: A FORTRAN program for profile and wavefront reduction. Int. J. Numer. Meth. Eng. 28(11), 2651–2679 (1989)

    Article  MATH  Google Scholar 

  30. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231–237. Springer, Heidelberg (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Meijer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Meijer, J., van de Pol, J. (2016). Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Reachability Analysis. In: Rayadurgam, S., Tkachuk, O. (eds) NASA Formal Methods. NFM 2016. Lecture Notes in Computer Science(), vol 9690. Springer, Cham. https://doi.org/10.1007/978-3-319-40648-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40648-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40647-3

  • Online ISBN: 978-3-319-40648-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics