iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-30671-1_45
Language Models for Collaborative Filtering Neighbourhoods | SpringerLink
Skip to main content

Language Models for Collaborative Filtering Neighbourhoods

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

Abstract

Language Models are state-of-the-art methods in Information Retrieval. Their sound statistical foundation and high effectiveness in several retrieval tasks are key to their current success. In this paper, we explore how to apply these models to deal with the task of computing user or item neighbourhoods in a collaborative filtering scenario. Our experiments showed that this approach is superior to other neighbourhood strategies and also very efficient. Our proposal, in conjunction with a simple neighbourhood-based recommender, showed a great performance compared to state-of-the-art methods (NNCosNgbr and PureSVD) while its computational complexity is low.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://grouplens.org/datasets/movielens/.

  2. 2.

    http://webscope.sandbox.yahoo.com.

  3. 3.

    http://www.macle.nl/tud/LT/.

References

  1. Bellogín, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems. In: RecSys 2011, p. 333. ACM (2011)

    Google Scholar 

  2. Bellogín, A., Parapar, J., Castells, P.: Probabilistic collaborative filtering with negative cross entropy. In: RecSys 2013, pp. 387–390. ACM (2013)

    Google Scholar 

  3. Bellogín, A., Wang, J., Castells, P.: Bridging memory-based collaborative filtering and text retrieval. Inf. Retr. 16(6), 697–724 (2013)

    Article  Google Scholar 

  4. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-N recommendation tasks. In: RecSys 2010, pp. 39–46. ACM (2010)

    Google Scholar 

  5. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)

    Article  Google Scholar 

  6. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Manage. Sci. 55(5), 697–712 (2009)

    Article  Google Scholar 

  8. Herlocker, J.L., Konstan, J.A., Terveen, L.G., John, T.: Riedl.: evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  9. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD 2008, pp. 426–434. ACM (2008)

    Google Scholar 

  10. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Losada, D.E., Azzopardi, L.: An analysis on document length retrieval trends in language modeling smoothing. Inf. Retr. 11(2), 109–138 (2008)

    Article  Google Scholar 

  12. Losada, D.E., Azzopardi, L.: Assessing multivariate bernoulli models for information retrieval. ACM Trans. Inf. Syst. 26(3), 17:1–17:46 (2008)

    Article  Google Scholar 

  13. Parapar, J., Bellogín, A., Castells, P., Barreiro, Á.: Relevance-based language modelling for recommender systems. Inf. Process. Manage. 49(4), 966–980 (2013)

    Article  Google Scholar 

  14. Ponte, J.M., Bruce Croft, W.: A language modeling approach to information retrieval. In: SIGIR 1998, pp. 275–281. ACM (1998)

    Google Scholar 

  15. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  16. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  17. Valcarce, D.: Exploring statistical language models for recommender systems. In: RecSys 2015, pp. 375–378. ACM (2015)

    Google Scholar 

  18. Valcarce, D., Parapar, J., Barreiro, Á.: A study of priors for relevance-based language modelling of recommender systems. In: RecSys 2015, pp. 237–240. ACM (2015)

    Google Scholar 

  19. Valcarce, D., Parapar, J., Barreiro, A.: A study of smoothing methods for relevance-based language modelling of recommender systems. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 346–351. Springer, Heidelberg (2015)

    Google Scholar 

  20. Wang, J., de Vries, A.P., Reinders, M.J.T.: A user-item relevance model for log-based collaborative filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.-Y.: A theoretical analysis of NDCG ranking measures. In: COLT 2013, pp. 1–30 (2013). JMLR.org

  22. Zhai, C.: Statistical Language Models for Information Retrieval. Synthesis Lectures on Human Language Technologies. Morgan & Claypool, San Rafael (2009)

    Google Scholar 

  23. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)

    Article  Google Scholar 

  24. Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-accuracy dilemma of recommender systems. PNAS 107(10), 4511–4515 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad of the Goverment of Spain under grants TIN2012-33867 and TIN2015-64282-R. The first author also wants to acknowledge the support of Ministerio de Educación, Cultura y Deporte of the Government of Spain under the grant FPU014/01724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Valcarce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Valcarce, D., Parapar, J., Barreiro, Á. (2016). Language Models for Collaborative Filtering Neighbourhoods. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics