iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-27149-1_8
Online Robot Teleoperation Using Human Hand Gestures: A Case Study for Assembly Operation | SpringerLink
Skip to main content

Online Robot Teleoperation Using Human Hand Gestures: A Case Study for Assembly Operation

  • Conference paper
  • First Online:
Robot 2015: Second Iberian Robotics Conference

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 418))

Abstract

A solution for intuitive robot command and fast robot programming is presented to assemble pins in car doors. Static and dynamic gestures are used to instruct an industrial robot in the execution of the assembly task. An artificial neural network (ANN) was used in the recognition of twelve static gestures and a hidden Markov model (HMM) architecture was used in the recognition of ten dynamic gestures. Results of these two architectures are compared with results displayed by a third architecture based on support vector machine (SVM). Results show recognition rates of 96 % and 94 % for static and dynamic gestures when the ANN and HMM architectures are used, respectively. The SVM architecture presents better results achieving recognition rates of 97 % and 96 % for static and dynamic gestures, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust Part-Based Hand Gesture Recognition Using Kinect Sensor. IEEE Trans. Multimed. 15, 1110–1120 (2013)

    Article  Google Scholar 

  2. Huang, P.-C., Jeng, S.-K.: Human body pose recognition from a single-view depth camera. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2144–2149. IEEE (2012)

    Google Scholar 

  3. Seal, A., Bhattacharjee, D., Nasipuri, M., Basu, D.K.: Thermal human face recognition based on GappyPCA. In: 2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), pp. 597–600. IEEE (2013)

    Google Scholar 

  4. Kirishima, T., Sato, K., Chihara, K.: Real-time gesture recognition by learning and selective control of visual interest points. IEEE Trans. Pattern Anal. Mach. Intell. 27, 351–364 (2005)

    Article  Google Scholar 

  5. Lambrecht, J., Kruger, J.: Spatial programming for industrial robots based on gestures and Augmented Reality. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 466–472. IEEE (2012)

    Google Scholar 

  6. Oz, C., Leu, M.C.: Linguistic properties based on American Sign Language isolated word recognition with artificial neural networks using a sensory glove and motion tracker. Neurocomputing 70, 2891–2901 (2007)

    Article  Google Scholar 

  7. Neto, P., Pires, J.N., Moreira, A.P.: High-level programming and control for industrial robotics: using a hand-held accelerometer-based input device for gesture and posture recognition. Ind. Robot. An. Int. J. 37, 137–147 (2010)

    Article  Google Scholar 

  8. Neto, P., Pires, J.N., Moreira, A.P.: Accelerometer-based control of an industrial robotic arm. In: RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 1192–1197. IEEE (2009)

    Google Scholar 

  9. Mitra, S., Acharya, T.: Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cybern. Part C Applications Rev. 37, 311–324 (2007)

    Article  Google Scholar 

  10. Yang, J., Bang, W., Choi, E., Cho, S., Oh, J., Cho, J., Kim, S., Ki, E., Kim, D.: A 3D hand-drawn gesture input device using fuzzy ARTMAP-based recognizer. J. Syst. Cybern. Informatics 4, 1–7 (2006)

    Google Scholar 

  11. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4 (2008)

    Google Scholar 

  12. Peng, B., Qian, G.: Online gesture spotting from visual hull data. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1175–1188 (2011)

    Article  Google Scholar 

  13. Badi, H.S., Hussein, S.: Hand posture and gesture recognition technology. Neural Comput. Appl. 25, 871–878 (2014)

    Article  Google Scholar 

  14. Wang, X., Xia, M., Cai, H., Gao, Y., Cattani, C.: Hidden-Markov-Models-Based Dynamic Hand Gesture Recognition. Math. Probl. Eng. (2012)

    Google Scholar 

  15. Bertsch, F.A., Hafner, V. V.: Real-time dynamic visual gesture recognition in human-robot interaction. In: 9th IEEE-RAS International Conference on Humanoid Robots, pp. 447–453. IEEE (2009)

    Google Scholar 

  16. Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: 20th European Signal Processing Conference (EUSIPCO 2012), pp. 1975–1979 (2012)

    Google Scholar 

  17. Zhang, Y., Zhang, L., Hossain, M.A.: Adaptive 3D facial action intensity estimation and emotion recognition. Expert Syst. Appl. 42, 1446–1464 (2015)

    Article  Google Scholar 

  18. El-Baz, A.H., Tolba, A.S.: An efficient algorithm for 3D hand gesture recognition using combined neural classifiers. Neural Comput. Appl. 22, 1477–1484 (2012)

    Article  Google Scholar 

  19. Badi, H., Hussein, S.H., Kareem, S.A.: Feature extraction and ML techniques for static gesture recognition. Neural Comput. Appl. 25, 733–741 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mendes, N., Neto, P., Safeea, M., Moreira, A.P. (2016). Online Robot Teleoperation Using Human Hand Gestures: A Case Study for Assembly Operation. In: Reis, L., Moreira, A., Lima, P., Montano, L., Muñoz-Martinez, V. (eds) Robot 2015: Second Iberian Robotics Conference. Advances in Intelligent Systems and Computing, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-319-27149-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27149-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27148-4

  • Online ISBN: 978-3-319-27149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics