Abstract
PageRank has numerous applications in information retrieval, reputation systems, machine learning, and graph partitioning. In this paper, we study PageRank in undirected random graphs with expansion property. The Chung-Lu random graph represents an example of such graphs. We show that in the limit, as the size of the graph goes to infinity, PageRank can be represented by a mixture of the restart distribution and the vertex degree distribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For a vector \(x \in \mathbf {R}^n,\) \(\left| \left| x\right| \right| _2 = \sqrt{\sum _i |x_i|^2}\) is the 2-norm.
- 2.
For any matrix \(A \in \mathbf {R}^{m,n}, \left| \left| A\right| \right| _2 = \sup _{x, \left| \left| x\right| \right| _2=1} \left| \left| Ax\right| \right| _2\) [6].
- 3.
For two matrices \(A \in \mathbf {R}^{m,n},\) and \(B \in \mathbf {R}^{n,p},\) \(\left| \left| AB\right| \right| _2 \le \left| \left| A\right| \right| _2 \left| \left| B\right| \right| _2\).
References
Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Proceedings of IEEE FOCS (2006)
Avrachenkov, K., Cottatellucci, L., Kadavankandy, A.: Spectral properties of random matrices for stochastic block model. In Proceedings of WiOpt Workshop PhysComNet (2015)
Avrachenkov, K., Dobrynin, V., Nemirovsky, D., Pham, S.K., Smirnova, E.: Pagerank based clustering of hypertext document collections. In: Proceedings of ACM SIGIR, pp. 873–874 (2008)
Avrachenkov, K., Gonçalves, P., Mishenin, A., Sokol, M.: Generalized optimization framework for graph-based semi-supervised learning. In: Proceedings of SIAM Conference on Data Mining, vol. 9 (2012)
Avrachenkov, K., Lebedev, D.: PageRank of scale-free growing networks. Internet Math. 3(2), 207–231 (2006)
Bhatia, R.: Matrix analysis. Springer Sci. Bus. Media 169, (2013)
Billingsley, P.: Probability and measure. Wiley, New York (2008)
Boudin, F.: A comparison of centrality measures for graph-based keyphrase extraction. In: Proceedings of the International Joint Conference on Natural Language Processing (IJCNLP) (2013)
Chen, N., Litvak, N., Olvera-Cravioto, M.: Pagerank in scale-free random graphs. In: Bonato, A., Graham, F.C., Prałat, P. (eds.) WAW 2014. LNCS, vol. 8882, pp. 120–131. Springer, Heidelberg (2014)
Chen, N., Litvak, N., Olvera-Cravioto, M.: Ranking algorithms on directed configuration networks (2014). Preprint arXiv:1409.7443
Chung, F.: A local graph partitioning algorithm using heat kernel pagerank. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 62–75. Springer, Heidelberg (2009)
Chung, F.: Spectral Graph Theory. American Mathematical Soc, Providence (1997)
Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. PNAS 99(25), 15879–15882 (2002)
Chung, F., Lu, L., Vu, V.: Spectra of random graphs with given expected degrees. PNAS 100(11), 6313–6318 (2003)
Chung, F., Radcliffe, M.: On the spectra of general random graphs. Electron. J. Comb. 18(1), 215 (2011)
Ding, C., He, X., Husbands, P., Zha, H., Simon, H.D.: PageRank. In: Proceedings of ACM SIGIR HITS and a Unified Framework for Link Analysis (2002)
Erdős, P., Rényi, A.: On random graphs. Publicationes Math. Debrecen 6, 290–297 (1959)
Fortunato, S., Boguñá, M., Flammini, A., Menczer, F.: Approximating pagerank from in-degree. In: Aiello, W., Broder, A., Janssen, J., Milios, E.E. (eds.) WAW 2006. LNCS, vol. 4936, pp. 59–71. Springer, Heidelberg (2008)
Gkorou, D., Vinko, T., Pouwelse, J., Epema, D.: Leveraging node properties in random walks for robust reputations in decentralized networks. In: Proceedings of IEEE Peer-to-Peer Computing (P2P) (2013)
Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of WWW, pp. 517–526 (2002)
Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for reputation management in p2p networks. In: Proceedings of WWW (2003)
Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004)
Litvak, N., Scheinhardt, W.R., Volkovich, Y.: In-degree and pagerank: why do they follow similar power laws? Internet Math. 4(2–3), 175–198 (2007)
Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. American Mathematical Soc, Providence (2009)
Moler, C., Moler, K.: Numerical Computing with MATLAB. SIAM (2003)
Page, L., Brin, S., Motwani, R., Winograd, T.: Pagerank: bringing order to the web. Stanford Digital Libraries Working Paper, v. 72 (1997)
Perra, N., Fortunato, S.: Spectral centrality measures in complex networks. Phys. Rev. E 78, 036107 (2008)
Vadhan, S.: Pseudorandomness. Found. Trends Theoret. Comput. Sci. 7(1–3), 1–336 (2012)
Volkovich, Y., Litvak, N.: Asymptotic analysis for personalized web search. Adv. Appl. Prob. 42(2), 577–604 (2010)
Yeh, E., Ramage, D., Manning, C.D., Agirre, E., Soroa, A.: WikiWalk: random walks on Wikipedia for semantic relatedness. In: Proceedings of the Workshop on Graph-based Methods for Natural Language Processing (2009)
Acknowledgements
We would like to thank Nelly Litvak for stimulating discussions on the topic of the paper. This work was partially supported by the French Government (National Research Agency, ANR) through the “Investments for the Future” Program reference ANR-11-LABX-0031-01 and ADR “Network Science” from Joint Inria Alcatel-Lucent Lab.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Avrachenkov, K., Kadavankandy, A., Ostroumova Prokhorenkova, L., Raigorodskii, A. (2015). PageRank in Undirected Random Graphs. In: Gleich, D., Komjáthy, J., Litvak, N. (eds) Algorithms and Models for the Web Graph. WAW 2015. Lecture Notes in Computer Science(), vol 9479. Springer, Cham. https://doi.org/10.1007/978-3-319-26784-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-26784-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-26783-8
Online ISBN: 978-3-319-26784-5
eBook Packages: Computer ScienceComputer Science (R0)