iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://unpaywall.org/10.1007/978-3-319-13257-0_30
transAD: An Anomaly Detection Network Intrusion Sensor for the Web | SpringerLink
Skip to main content

transAD: An Anomaly Detection Network Intrusion Sensor for the Web

  • Conference paper
Information Security (ISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8783))

Included in the following conference series:

  • 1806 Accesses

Abstract

Content-based Anomaly Detection (AD) techniques are regarded as a promising mechanism to detect ‘zero-day’ attacks. AD sensors have also been shown to perform better than signature-based systems in detecting polymorphic attacks. However, the False Positive Rates (FPRs) produced by current AD sensors have been a cause of concern. In this paper, we introduce and evaluate transAD, a system of network traffic inspection AD sensors that are based on Transductive Confidence Machines (TCM). Existing TCM-based implementations have very high FPRs when used as NIDS.

Our approach leverages an unsupervised machine-learning algorithm to identify anomalous packets and thus, unlike most AD sensors, transAD does not require manually labeled data. Moreover, transAD uses an ensemble of TCM sensors to achieve better detection rates and lower FPRs than single sensor implementations. Therefore, transAD presents a hardened defense against poisoning attacks.

We evaluated our prototype implementation using two real-world data sets collected from a public university’s network. TransAD processed approximately 1.1 million packets containing real attacks. To compute the ground truth, we manually labeled 18,500 alerts. In the course of scanning millions of packets, our sensor’s low FPR would significantly reduce the number of false alerts that need to be inspected by an operator, while maintaining a high detection rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbará, D., Domeniconi, C., Rogers, J.P.: Detecting outliers using transduction and statistical testing. In: ACM SIGKDD, KDD 2006, pp. 55–64 (2006)

    Google Scholar 

  2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970), http://doi.acm.org/10.1145/362686.362692

    Article  MATH  Google Scholar 

  3. Boggs, N., Hiremagalore, S., Stavrou, A., Stolfo, S.J.: Cross-domain collaborative anomaly detection: So far yet so close. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 142–160. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Cisco: Cisco security products (July 2012), http://www.cisco.com/en/US/products/hw/vpndevc/products.html

  5. Cretu, G., Stavrou, A., Locasto, M., Stolfo, S., Keromytis, A.: Casting out demons: Sanitizing training data for anomaly sensors. In: IEEE S&P, pp. 81–95 (May 2008)

    Google Scholar 

  6. Denning, D.: An intrusion-detection model. IEEE Transactions on Software Engineering SE-13(2), 222–232 (1987)

    Article  Google Scholar 

  7. Fowler, G., Noll, L.C., Vo, P.: Fowler/Noll/Vo (FNV) Hash (1991)

    Google Scholar 

  8. Gammerman, A., Vovk, V.: Prediction algorithms and confidence measures based onalgorithmic randomness theory. Theoretical Computer Science 287 (2002)

    Google Scholar 

  9. Juniper: Juniper network security products (July 2012), http://www.juniper.net/us/en/products-services/security/

  10. Kuang, L.: Dnids: A dependable network intrusion detection system using the csi-knn algorithm. Queen’s University (2007)

    Google Scholar 

  11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Tech. Rep. 8 (1966)

    Google Scholar 

  12. McAfee: McAfee Threats Report: First Quarter 2012 (2012), http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2012.pdf

  13. McAfee: Network intrusion prevention (July 2012), http://www.mcafee.com/us/products/network-security-platform.aspx

  14. Patcha, A., Park, J.M.: An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks 51(12) (2007)

    Google Scholar 

  15. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Networks 31(23-24), 2435–2463 (1999)

    Article  Google Scholar 

  16. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intrusion detection. In: IEEE S&P (May 2010)

    Google Scholar 

  17. Sourcefire: Snort intrusion detection system (July 2012), http://www.snort.org/

  18. Suricata: Suricata intrusion detection (July 2012), http://www.openinfosecfoundation.org/

  19. Symantec: Internet Security Threat Report, vol. 17 (2012), http://www.symantec.com/threatreport/

  20. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A detailed analysis of the kdd cup 99 data set. In: CISDA 2009, pp. 1–6 (July 2009)

    Google Scholar 

  21. Vovk, V., Gammerman, A., Saunders, C.: Machine-learning applications of algorithmic randomness. In: ICML 1999, pp. 444–453 (1999)

    Google Scholar 

  22. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and signature generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 227–246. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: A content anomaly detector resistant to mimicry attack. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 226–248. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hiremagalore, S., Barbará, D., Fleck, D., Powell, W., Stavrou, A. (2014). transAD: An Anomaly Detection Network Intrusion Sensor for the Web. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds) Information Security. ISC 2014. Lecture Notes in Computer Science, vol 8783. Springer, Cham. https://doi.org/10.1007/978-3-319-13257-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13257-0_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13256-3

  • Online ISBN: 978-3-319-13257-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics